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1 Introduction

The primary goal of the MINC project was to complete the fundamental research required to develop an

inference methodology that would, for the first time, allow end-systems and other network elements to

determine the performance characteristics (such as loss, delay, and available bandwidth) of both individual

links and end-end paths within an internetwork. The goal was a methodology that did not require the active

participation of the links and routers being characterized. The MINC project also had as a goal to develop

measurement tools that would run on the NIMI (the National Internet Measurement Infrastructure), and to

devlelop analysis tools to apply to the measurements.

The main outcomes of the project were the following

� Multicast-based network inference techniques: We developed statistically rigorous estimation tech-

niques to determine link loss and delay, and to identify the multicast tree topology. The techniques use

the set of receiver traces of end-end path performance in a multicast tree and exploit the correlation

that multicast traffic inherently contains to derive link-level performance metrics.

� Unicast-based network inference techniques: We also developed similar techniques, which rely on

unicast measurements.

� Measurement layout techniques: We developed efficient algorithms for selecting and laying out

low cost multicast distribution trees for the purpose of inferring the behavior of a target set of network

links.

� Measurement, analysis, and visualization tools: We developed end-to-end measurement tools that

run on NIMI and a validated, web-based tool, MINT (Multicast Inference Network Tool) that allows

an analyst to analyze and visualize internal network behavior.

We describe each of these outcomes in the remainder of this report. Prior to this, we motivate the need

for our project.

2 Motivation

As the Internet grows in size and diversity, its internal performance becomes ever more difficult to measure.

Any one organization has administrative access to only a small fraction of the network’s internal nodes,

whereas commercial factors often prevent organizations from sharing internal performance data. End-to-

end measurements using unicast traffic do not rely on administrative access privileges, but it is difficult to

infer link-level performance from them and they require large amounts of traffic to cover multiple paths.

There is, consequently, a need for practical and efficient procedures that can take an internal snapshot of a

significant portion of the network.

1



source

R1 R2

Figure 1: A tree connecting a sender to two receivers.

The focus of the MINC project has been the development of measurement techniques that address these

problems. MINC (Multicast Inference of Network Characteristics) uses end-to-end multicast measurements

to infer link-level loss rates and delay statistics by exploiting the inherent correlation in performance ob-

served by multicast receivers. These measurements do not rely on administrative access to internal nodes

since they are done between end hosts. In addition, they scale to large networks because of the bandwidth

efficiency of multicast traffic.

Focusing on loss for the moment, the intuition behind packet loss inference is that the event of the

arrival of a packet to a given internal node in the tree can be inferred from the packet’s arrival at one or more

receivers descended from that node. Conditioning on this latter event, we can determine the probability of

successful transmission to and beyond the given node. Consider, for example (Figure 1) a simple multicast

tree with a root node (the source), two leaf nodes (receivers �� and ��), a link from the source to a branch

point (the shared link), and a link from the branch point to each of the receivers (the left and right links).

The source sends a stream of sequenced multicast packets through the tree to the two receivers. If a packet

reaches either receiver, we can infer that the packet reached the branch point. Thus the ratio of the number

of packets that reach both receivers to the total number that reached only the right receiver gives an estimate

of the probability of successful transmission on the left link. The probability of successful transmission on

the other links can be found by similar reasoning.

The remainer of this report is organized as follows. We describe the MINC multicast methodology

in Section 3, its adaptation to the use of unicast in Section 4, and the tree layout methodology (Section 5).

Following this, we describe the measurement methodology and the analysis tool, MINT (Section 7). Section

8 offers some conclusions.

3 Statistical Methodology

MINC works on logical multicast trees, i.e. those whose nodes are identified as branch points of the physical

multicast tree. A single logical link between nodes of the logical multicast tree may comprise more than one

physical link. MINC infers composite properties of the logical links. Henceforth when we speak of trees we

will be speaking of logical multicast trees.
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3.1 Loss Inference

We model packet loss as independent across different links of the tree, and independent between different

probes. Thus, the loss model associates with each link � in the tree, the probability �� that a packet reaches

the terminating node of the link, also denoted by �, given that it reaches the parent node of �. The link

loss probability is, then, �� � ���. Each receiver records the outcome of each probe sent by the source,

i.e., whether it is received or not. The �� can be expressed directly as a function of the probabilities of all

possible outcomes of success and loss of a probe at each receiver. An experiment consists of a series of

probes transmitted from the source. The outcome of each probe at each receiver is recorded and the link

probabilities are inferred by the estimators �� obtained by using the actual frequencies of the outcomes. [4]�

contains a detailed description and analysis of the inference algorithm.

�The estimators �� exhibit several desirable statistical properties. It was shown in [4] that �� is the�

Maximum Likelihood Estimator (MLE) of �� when sufficiently many probes are used. The MLE is defined

as the set of link probabilities that maximizes the probability of obtaining the observed outcome frequencies.

The MLE property in turn implies two further properties of �, namely�

�1. consistency: �� converges to the true value �� almost surely as the number of probes � grows to

infinity, and

�
2. asymptotic normality: the distribution of the quantity �������� converges to a normal distribution�

as � grows to infinity.

The latter property implies that the probability of an error of a given size in estimating a link probability

goes to zero exponentially fast in the number of probes.

The computation of the �� is performed recursively on the tree; the computational cost is linear in the�

number of probes and number of nodes in the tree. Details of this algorithm are found in [4], which can be

found in the Appendix.

Often we are faced with the problem of inferring the link loss behavior for a collection of multicast trees.

We have developed two approaches for handling this problem. The first is to treat each tree separately and

obtain the MLE for each segment cotained within each tree. If a segment is found in two or more trees, then

we return the minimum variance weighted average (MVWA), an estimate equal to the weighted average of

the MLEs obtained from the different trees. Here the weights are taken to be proportional to the variances

in the link estimates.

The second approach consists of applying the expectation maximization (EM) algorithm [16] to the

entire collection of trees. Briefly, the EM algorithm calculates the maximum lieklihood estimate of the link

probabilities in an iterative fashion. Our experience with both the MVWA and EM algorithms suggests that

much of the time there is little difference in the quality of the estimates that they return. However, when there

are either few observations or the numbers of observations vary widely from tree to tree, the EM algorithm

3



produces a more accurate estimate. Details of these two approaches can be found in [3], which can be found

in the Appendix.

Finally, situations arise where observations may be missing from different subsets of receivers in a

tree. Such a situation is easily handled using the EM algorithm to fill in the missing observations with

estimates based on the observations that are available. We have observed from simulation studies that the

quality of the estimates produced when observations are missing is close to that for the case of complete

observations unless the percantage of missing observations exceeds 70% to 80%. Details of the algorithm

and its evaluation can be found in [12], also found in the Appendix.

3.2 Delay Distribution Inference

A generalization of the loss inference methodology allows one to infer per link delay distributions. More

precisely, we infer the distribution of the variable portion of the packet delay, what remains once the link

propagation delay and packet transmission time are removed. Packet link delays are modeled as discrete

random variables that can take one of a finite number of values, independent between different packets and

links. The model is specified by a finite set of probabilities ����� that a packet experiences delay � while

traversing the link terminating at node �, with infinite delay interpreted as loss.

When a probe is transmitted from the source, we record either the time taken by a probe to reach each

receiver or that the probe was lost. As with the loss inference, a probabilistic analysis enables us to relate

the ����� to the probabilities of the outcomes at the receivers. We infer the link delay probabilities by the

estimators ������ obtained by using instead the actual frequencies of the outcomes arising from the dispatch a

number of probes. In [15], it was shown that the corresponding estimator����� of the link delay distributions

is strongly consistent and asymptotically normal. [15] is found in the Appendix.

3.3 Delay Variance Inference

The delay variance can be directly estimated Consider the binary topology of Figure 1. Let �� be the packet

delay on the link emanating from the source, and ��� � � �� �, the delay on the link terminating at receiver

�. The end-to-end delays from the source to leaf node � � �� �, is expressed as �� � �� � ��. A short

calculation shows that, with the assumption that the �� are independent, ������� � 	
����� ���. Thus

the variance of the delay �� can be estimated from the measured end-to-end delays from the source to the

leaves. This approach has been generalized to estimate link delay variances in arbitrary trees. Details can

be found in [13], which is is contained within the Appendix.

3.4 Topology Inference

In the loss inference methodology described above, the logical multicast tree was assumed to be known

in advance. However, extensions of the method enable inference of an unknown multicast topology from
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end-to-end measurements. We describe briefly three approaches.

The first, which relies on loss-based grouping was suggested in [21], in the context of grouping multicast

receivers that share the same set of network bottlenecks from the source. The loss estimator of Section 3.1

estimates the shared loss to a pair of receivers, i.e., the composite loss rate on the common portion of the

paths from the source, irrespective of the underlying topology. Since this loss rate is larger the longer the

common path in question, the actual shared loss rate is maximized when the two receivers are siblings.

A binary tree can be reconstructed iteratively using this approach. Starting with the set of receiver nodes

�, select the pair of nodes �� � in � that maximizes the estimated shared loss, group them together as the

composite node. Iterate on this and the set remaining nodes from � until all are grouped. The algorithm is

consistent: the probability of correct identification converges to one as the number of probes grows; see [11].

General (i.e. non-binary) trees can be inferred by using this algorithm and then transforming the resulting

binary tree by pruning links with inferred loss rates less than some threshold �. We refer to this as the binary

loss tree with pruning (BLTP) algorithm.

A second, Bayesian approach assumes that the topology comes from a known prior distribution. It then

identifies the topology that minimizes a posterior risk function associated with topologies. This approach

requires the least number of observations in order to classify the topology, provided that the topology comes

from the known prior distribution.

The third, a direct ML approach, calculates the maximum likelihood of the measured outcomes over

all possible ��. The topology that maximizes this quantity is chosen to be our estimate. This classifier is

consistent [11].

Our experience with these three approaches is that the Bayesian algorithm is slightly more accurate than

the BLTP algorithm, but at the cost of significant computational complexity. The direct ML approach does

not do as well as either of the other algorithms. Details of these algorithms and their evaluation can be found

in [11]. This publication can be found in the Appendix.

The loss-based grouping algorithm approach can be extended by replacing shared loss with any function

on the nodes that (i) increases on moving further from the source; and (ii) whose value at a given node can be

consistently estimated from measurements at receivers descended from that node. The mean and variance of

the cumulative delay from the source to a given node exhibit these properties. Hence, multicast end-to-end

delay measurements can also be used to infer the multicast topology. Details of this approach can be found

in [9], which is contained in the Appendix.

Last, We have combined the use of losses and delays to develop a hybrid grouping algorithm that com-

bines the best of BLTP and a delay based algorithm. The basic idea is as follows. At each step where two

nodes are to be combined, candidates are selected based on losses and on delays. The probabilities of each

of these being in error are estimated and the candidates that yield the lowest error are chosen. In other words,

the selection is determined by losses if this leads to a lower probability of error and by delays otherwise.
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This approach is described in [8], which is contained in the Appendix.

4 Unicast-based Methods

At the start of this project we had every expectation that multicast woud become pervasive throughout the

Internet. Unfortunately, its deployment has proceeded very slowly. Consequently, we turned our attention

to adapting our techniques for use with end-to-end unicast measurements.

In this section, we describe our work to adapt the multicast inference techniques described in Section

3 to perform inference of internal network characteristics from unicast end-to-end measurements. The data

for the inference comprises measured end-to-end loss of unicast probes sent from a source to a number of

destinations. This is used to infer the loss and delay characteristics of each logical link of the source tree

joining the source to the destinations, i.e., of the composite paths between its branch points.

The idea is to construct composite probes of unicast packets whose collective statistical properties

closely resemble those of a multicast packet. We shall speak of striping a group of unicast packets across a

set of destinations. This entails dispatching the packets back-to-back from a source, each packet potentially

having a different destination address. Our premise is that when the duration of network congestion events

exceeds the temporal width of the stripe, packets should have very similar experience of the network upon

traversing common portions of the paths to their destinations. If the experiences were identical, the packets

from a stripe that attempt to traverse a given link would either all be lost, or encounter identical delay. Hence

the packet loss and delays on a given link would be perfectly correlated within a stripe; the composite probe

would have the same statistical properties as a notional multicast packet that followed the same source tree.

In this case the methods presented in Section 3 could be applied immediately to infer the per link loss and

delay statistics of the logical links source tree.

However, correlations within stripes may be less than perfect in practice. This is because congestion

events may not affect packets uniformly, subjecting stripes to dispersion as they travel through a network.

Some mechanisms by which this can happen are the following. Packet loss will not be uniform during loss

events that are narrower than the stripe, or those that start or stop while the stripe is in progress. Further-

more, delays will vary due to interleaving of background traffic, e.g., when moving from a low to a high

capacity link. Although such effects should be small for sufficiently narrow stripes, they will be cumulative.

Packet-dropping on the basis Random Early Detection (RED) [17] is another mechanism by which packet

loss may become decorrelated. It remains to be seen whether this mechanism will be widely deployed

in communications networks. On the other hand, the use of RED to merely mark packets will not break

correlations.

This motivated the following four investigations:

(i) determining the magnitude of imperfect correlations through experiments on real networks;
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(ii) calculating their likely impact on the accuracy of inference via methods that assume perfect correla-

tions;

(iii) adopting measurement procedures that reduce the impact of imperfect correlations;

(iv) verifying the accuracy of the approach in simulations.

We extended the packet loss model of Section 3 by incorporating an additional parameter for each link

that describes the correlation of loss between different packets of the same stripe. This is done for binary

stripes, i.e., those comprising two packets with different destination addresses. These additional parameters

cannot themselves be determined by end-to-end measurements, at least not without additional assumptions

relating them to each other, or to the existing loss rate parameters.

By constructing appropriate stripes of composite probes and selecting subsets of these probes for in-

ference, we are able to enhance correlations within data used for inference. This is possible when packet

transmissions are correlated in the sense that a given packet in a stripe is more likely to be transmitted

when other of its packets are known to have been transmitted. By conditioning on the measurable event that

nearby packets have been transmitted, we raise the likelihood of transmission of a given packet closer to �.

By sending the striped packets to diverse addresses, we can infer the properties of internal network paths

from the measurements.

We evaluated the proposed methods through through measurements over the Internet and through simu-

lation. We collected end-to-end measurements on the National Internet Measurement Infrastructure (NIMI)

[19] from a diverse set of Internet paths. We transmitted stripes between pairs of end-hosts and verified

that their packet loss statistics were consistent with the correlation assumptions that underlie the method.

(These stripes were different from those defined above, since all packets in the stripes were sent to the same

destination) We also estimated the likely accuracy that would be obtained by stripe-based inference in the

network.

We supported the measurement work through network level simulation with ns [20]. By instrumenting

the simulation we traced the origin of end-to-end behavior to network internal characteristics. This allowed

us first to exhibit the correlation properties of packet within stripes as they are transmitted across individual

links in the network (rather than just the end-to-end properties), and second to compare the inferred link loss

rates with actual link loss rates. For the most accurate choice of striping method we find the typical absolute

error in loss rate inference to be below 1%.

Details of this extension to unicast is found in [14], also contained within the Appendix.

5 Tree Layout

In the previous sections, we have described algorithms for inferring internal network behavior. In this

section we describe algorithms developed during the project for choosing the trees over which to perform
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measurements.

A network is represented by a directed graph � � ����� where � and � denote the set of nodes and

links within � respectively. Our interest is in multicast trees embedded within � . Let � � � be a set of

possible multicast senders, and � � � be a set of possible multicast receivers. Let � � ��� � �� � denote a

directed (multicast) tree with a source �� and a set of leaves �� . We require that �� � � and �� � �. Let

	 be a routing algorithm that produces the distribution tree 	��� �� between a source � � � and receiver set

� � �. Let � �	����� � �	��� �� � � � �� � � �
����, i.e., � ����� is the set of all possible multicast

distribution trees within the network � with sources from � and receiveers from �. 	.

Associated with a multicast tree � � � ����� is a cost

��� � � ��
� �
�

����� �

��� (1)

where the first term can be thought of as a “per tree cost” and the second is a “per link cost”. For example,

IP multicast requires each multicast router to maintain per flow state. This is accounted for by the per tree

cost. The per link cost is the cost for sending probe packets through a link. The two problems of interest to

us are as follows:

Multicast Tree Identifiability Problem (MTIP). Given a set of multicast trees � � � �����, and a set of

links � � �, is � identifiable by the set of trees �?

Minimum cost Multicast Tree Cover Problem (MMTCP). Given ��� � � , � � � and � is identifiable

by � �����, what is the minimum cost subset of � ����� sufficient to cover �? In other words, find � �

� ����� that covers � and minimizes

���� �
�

���

��� �

We have developed the following during the project.

� We developed efficient algorithms for solving the identifiability problems.

� We established that the cover problem is NP-hard and that in some cases, finding an approximation

within a certain factor of optimal is also NP-hard. Thus, we also propose several heuristics and show

through simulation that a greedy heuristic that iteratively combines trees containing a small number

of receivers performs reasonably well.

� We developed polynomial time algorithms that find optimal solutions for a restricted class of network

topologies, including trees. This algorithm can be used to provide a heuristic for sparse, tree like

networks. This heuristic is also shown through simulation to perform well.

� We applied our techniques to the vBNS and Abilene network as well as randomly generated networks,

showing the effectiveness of the different heuristics.

Details of this work can be found in [2], which can be found in the Appendix.
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6 Experimental Results

In this section we briefly describe our efforts to validate the MINC methodology. Section 6.1 contains a

description of the results of a measurement study in which we collected end-to-end loss traces from the

MBone and validated the results from inferences of loss rates collected using the Internet tool mtrace.

Section 6.2 contains a description of the results from more detailed simulation studies of both loss and

delay.

6.1 Measurement Experiments

To validate MINC under real network conditions, we performed a number of measurement experiments on

the MBone, the multicast-capable subset of the Internet. Across our experiments we varied the multicast

sources and receivers, the time of day, and the day of the week. We compared inferred loss rates to directly

measured loss rates for all links in the resulting multicast trees. The two sets of quantities agreed closely

throughout.

During each experiment, a source sent a stream of 40 byte, sequenced packets every 100 miiliseconds

to a multicast group consisting of a collection of receivers over the course of one hour. The resulting traffic

stream placed less than 4 Kbps of load on any one MBone link. At each receiver, we made two sets of

measurements on this traffic stream using the mtrace and mbat software tools.

We used mtrace to determine the topology of the multicast tree. mtrace traces the reverse path from

a multicast source to a receiver. It runs at the receiver and issues trace queries that travel hop by hop along

the multicast tree towards the source. Each router along the path responds to these queries with its own IP

address. We determined the tree topology by combining this path information for all receivers.

We also used mtrace to measure per-link packet losses. Routers also respond to mtrace queries with

a count of how many packets they have seen directed to the specified multicast group. mtrace calculates

packet losses on a link by comparing the packet counts returned by the two routers at either end of the link.

We ran mtrace every two minutes during each one-hour experiment. These mtrace queries were also

used to verify that the topology remained constant during each experiment.

It is important to note that mtrace does not scale to measurements of large multicast groups if used

in parallel from all receivers as we describe here. Parallel mtrace queries converge as they travel up the

tree. Enough such queries will overload routers and links with measurement traffic. We used mtrace in

this way only to validate MINC on relatively small multicast groups.

We used mbat to collect traces of end-to-end packet losses. mbat runs at a receiver, subscribes to a

specified multicast group, and records the sequence number and arrival time of each incoming packet. We

ran mbat at each receiver for the duration of each hour-long experiment.

We then segmented the mbat traces into two-minute subtraces corresponding to the two-minute intervals

on which we collected mtrace measurements. Finally, we ran our loss inference algorithm on each two-
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Figure 2: Multicast routing tree during our representative MBone experiment.

minute interval and compared the inferred loss rates with the directly measured loss rates.

Here we highlight results from a representative experiment on August 26, 1998. Figure 2 shows the

multicast routing tree in effect during the experiment. The source was at the U. of Kentucky and the receivers

were at AT&T Labs, U. of Massachusetts, Carnegie Mellon U., Georgia Tech, U. of Southern California,

U. of California at Berkeley, and U. of Washington. The four branch routers were in California, Georgia,

Massachusetts, and New Jersey.

Figure 3 shows that inferred and directly measured loss rates agreed closely despite a link experiencing

a wide range of loss rates over the course of a one-hour experiment. Each short horizontal segment in

the graph represents one two-minute, 1,200-probe measurement interval. As shown, loss rates on the link

between the U. of Kentucky and Georgia varied between 4% and 30%. Nevertheless, differences between

inferred and directly measured loss rates remained below 1.5%.

In summary, our MBone experiments showed that inferred and directly measured loss rates agreed

closely under a variety of real network conditions:

� Across a wide range of loss rates (4%–30%) on the same link.

� Across links with very low (� 1%) and very high (� 30%) loss rates.

� Across all links in a multicast tree regardless of their position in the tree.

� Across different multicast trees.

� Across time of day and day of the week.

Furthermore, in all cases the inference algorithm converged to the desired loss rates well within each

two-minute, 1,200-probe measurement interval.

A more detailed description of the experiments and results is found in [7], which is found in the Ap-

pendix.
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Figure 3: Inferred vs. actual loss rates on link between UKy and GA.

6.2 Simulation Experiments

We have performed more extensive validations of our inference techniques through simulation in two dif-

ferent settings: the simulation of the model with Bernoulli losses and simulations of networks with realistic

traffic. In the model simulations, probe loss and delay obey the independence assumption of the model.

We applied the inference algorithm to the end-to-end measurements and compared the inferred and actual

model parameters for a large set of topologies and parameter values. We found that loss rates, mean delay,

and variance estimates converged to close to their actual values with 2,000 probes. The number of probes

required to accurately compute the entire delay distributions is higher. In our experiments we found good

agreement with 10,000 probes.

The second type of experiment is based on the ns [20] simulator. Here delay and loss correspond to

queueing delay and queue overflow at network nodes as multicast probes compete with traffic generated by

TCP/UDP traffic sources. Multicast probes are generated by the source with fixed mean interarrival times;

we used CBR or Poisson probes. We simulated different topologies with different background traffic mixes

comprising infinite FTP sessions over TCP and exponential or Pareto on-off UDP sources. We considered

both Drop Tail and Random Early Detection (RED) buffer discard methods, [17].

We compared the inferred loss and delay with actual probe loss and delay. We found rapid convergence

of the estimates although with small persistent differences. We attribute this to the presence of spatial

dependence, i.e., dependence between probe losses and delays on different links. This can arise through

correlations in the background traffic due to correlation arising from TCP dynamics, e.g., synchronization

between flows as a result of slow-start after packet loss. We have shown in [4] that small deviations from

the spatial independence assumption lead to only small errors in inference.

We also found that background traffic introduces temporal dependence in probe behavior, e.g., its bursti-
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Figure 4: Inferred and Sample Delay ccdf. for a leaf link in the topology of Figure 2.

ness can cause back-to-back probe losses. We have shown that while temporal dependence can decrease

the rate of convergence of the estimators, consistency is unaffected. In the experiments the inferred values

converged within 2,000 probes despite the presence of temporal dependence.

While there is understanding of mechanisms by which temporal and spatial dependence can occur, as

far as we know there are no experimental results concerning its magnitude. We believe that large or long

lasting dependence is unlikely in the Internet because of traffic and link diversity. Moreover, we expect loss

correlation to be reduced by the introduction of RED.

We also compared the inferred probe loss rates with the background loss rates. The experiments showed

these to be quite close, although not as close as inferred and actual probe loss rates. We attribute this to the

inherent difference in the statistical properties of probe traffic and background traffic.

To illustrate the distribution of delay inference results, we simulated the topology of the multicast routing

tree shown in Figure 2. In order to capture the heterogeneity between edges and core of a network, interior

links have higher capacity (5Mb/sec) and propagation delay (50ms) than those at the edge (1Mb/sec and

10ms). Background traffic comprises infinite FTP sessions and exponential on-off UDP sources. Each link

is modeled as a FIFO queue with a 4-packet capacity. Real buffers are usually much larger; the capacity of

four is used to reduce the time required to simulate the network. The discard policy is Drop Tail. In Figure

4, we plot the inferred versus the sample complementary cumulative distribution function (discretized in one

millisecond bins) for one of the leaf links, using about 18,000 Poisson probes. The estimated distribution
��closely follows the sample distribution and is quite accurate for tail probabilities greater than �� . Note

that the estimated distribution is not always monotonically decreasing. This is because negative probabilities

are occasionally estimated in the tail due to an insufficient number of samples. It is worth pointing out that,

given the irregular shape of the sample distribution, the same level of accuracy would not be possible using

a parametric model.

The evaluation of loss-based techniques can be found in [4] and [5], both of which are contained in the
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Figure 5: An RTCP-based tool deployment example, on the same topology as shown in Figure 2, with
inference being performed at UMass.

Appendix. The evaluation of delay-based techniques can be found in [15], also contained in the Appendix.

7 Measurement and Analysis Tools

We have developed two sets of tools by which to deploy the MINC methodology. First, we have developed

tools that leverage off of the real-time transport protocol, RTP, and its associated control protocol, RTCP,

for generating and collecting end-to-end multicast measurement traces. Our RTP-based tool is described in

Section 7.1. Second, we developed a web-based analysis and visualization tool, MINT (Multicast Inference

Network Tool) for inferring loss behavior. This tool is described in Section 7.2.

7.1 Integration with RTCP

We have developed tools for applying MINC in real-time, so that MINC can be used by applications to

respond to changing network conditions in new and more sophisticated ways. For example, a management

program might adaptively adjust its probes to home in on a problem router.

Our tools transmit network information using RTCP, the control protocol for multicast transport protocol

RTP [22]. By sharing their traces using RTCP, they benefit from RTCP’s built-in scaling mechanisms.

The approach is based on three tools: mgen, mflect, and mmerge (Figure 5). mgen generates

a stream of data (and may be replaced by any other application that multicasts data over RTP). A copy

of mflect at each receiver maintains traces of the packets it does and does not receive from mgen. It

periodically multicasts these (in a sense reflecting the data stream: hence “mflect”). mmerge collects the

traces sent by mflect, collating those from the different data receivers and making them available to a

tool, such as MINT, for inference.

mflect and mmerge are designed so that they may be incorporated directly into existing and future

multicast applications. Their joint functionality is available as an extension to the RTP common code library

from University College London, called RTPXR, (“eXtended Reporting”). An application using RTPXR

would be in a position to respond adaptively to information on the topology of its data distribution tree.

In order that these tools scale to large numbers of receivers, we have developed thinning and compression
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Figure 6: MINT view of the logical multicast tree with losses. 

techniques. Thinning of receiver reports is necessary in order to avoid the abuse of bandwidth by receivers. 

We developed a coordinated thinning algorithm, which attempts to maximize the overlap between receiver 

reports, i.e., have receivers report on the same set of probes. Compression can further reduce bandwidth 

usage. Details of the approach can be found in [6], which is contained in the Appendix. 

7.2 MINT: Multicast Inference Network Tool 

MINT is intended to facilitate multicast-based inference. It takes as inputs all of the traces collected from 

the end-hosts. These traces may or may not include mtrace outputs. MINT comprises three components: 

a web-based user interface, a topology discovery algorithm, and an inference engine. Users interact with 

MINT to manipulate the inference such as choosing number of samples, visualizing the multicast tree with 

losses or showing the performance evolution over specific links. Depending on the availability of mtrace 

output, MINT discovers the topology by either parsing mtrace inputs or inferring the multicast tree from 

the loss traces. The inference engine takes topology information and loss traces to infer the network internal 

loss and then provides this to the user. The user can then view the results in one of several ways. One way is 

to lay out the logical multicast tree and display the links in different colors to distinguish different average 

loss rates (e.g., Figure 6). The user can also focus on a single link and observe how the loss rate evolves 

over time for that link. 

8 Conclusions 

We have presented the results obtained from our research on the use of end-end measurements to infer inter­

nal network behavior. We aslo described several tools obtained from this effort for obtaining measurements 

and for analyzing and visualizing the results from this analysis. All of the algorithms and their detailed eval­

uation can be found in the Appendix. Last, it is worth noting that this project has had considerable impact 

on research in this area. It constitutes the first effort to develop a rigorous foundation on top of which to de-
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sign and evaluate end-to-end based network management tools. Many efforts are now under way exploring

various extensions to the approaches developed under MINC. These include efforts at Rice, Boston Univ.,

UPenn, Lucent Bell Labs, Technion among others.
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Multicast-Based Inference of Network-Internal Loss Characteristics�

R. Cáceresy N.G. Duffieldz J. Horowitzx D. Towsley�

Abstract

Robust measurements of network dynamics are increasingly important to the design and operation of
large internetworks like the Internet. However, administrative diversity makes it impractical to monitor
every link on an end-to-end path. At the same time, it is difficult to determine the performance character-
istics of individual links from end-to-end measurements of unicast traffic. In this paper, we introduce the
use of end-to-end measurements of multicast traffic to infer network-internal characteristics. The band-
width efficiency of multicast traffic makes it suitable for large-scale measurements of both end-to-end
and internal network dynamics.

We develop a Maximum Likelihood Estimator for loss rates on internal links based on losses ob-
served by multicast receivers. It exploits the inherent correlation between such observations to infer the
performance of paths between branch points in the tree spanning a multicast source and its receivers.
We derive its rate of convergence as the number of measurements increases, and we establish robustness
with respect to certain generalizations of the underlying model. We validate these techniques through
simulation and discuss possible extensions and applications of this work.

1 Introduction

Background and Motivation. Fundamental ingredients in the successful design, control and management

of networks are mechanisms for accurately measuring their performance. Two approaches to evaluating

network performance have been:

(i) Collecting statistics at internal nodes and using network management packages to generate link-level

performance reports; and

(ii) Characterizing network performance based on end-to-end behavior of point-to-point traffic such as

that generated by TCP or UDP.

A significant drawback of the first approach is that gaining access to a wide range of routers in an ad-

ministratively diverse network can be difficult. Introducing new measurement mechanisms into the routers

themselves is likewise difficult because it requires persuading large companies to alter their products. Also,
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the composition of many such small measurements to form a picture of end-to-end performance is not com-

pletely understood.

Regarding the second approach, there has been much recent experimental work to understand the phe-

nomenology of end-to-end performance (e.g., see [1, 2, 14, 19, 21, 22]). A number of ongoing measurement

infrastructure projects (Felix [5], IPMA [7], NIMI [13] and Surveyor [28]) aim to collect and analyze end-

to-end measurements across a mesh of paths between a number of hosts. pathchar [10] is under evaluation

as a tool for inferring link-level statistics from end-to-end point-to-point measurements. However, much

work remains to be done in this area.

Contribution. In this paper, we consider the problem of characterizing link-level loss behavior within a

network through end-to-end measurements. We present a new approach based on the measurement and

analysis of the loss behavior of multicast probe traffic. The key to this approach is that multicast traffic

introduces correlation in the end-to-end losses measured by receivers. This correlation can, in turn, be used

to infer the loss behavior of the links within the multicast routing tree spanning the sender and receivers.

This enables the identification of links with higher loss rates as candidates for the origin of the degradation

of end-to-end performance.

Using this approach, we develop maximum likelihood estimators (MLEs) of the link loss rates within

a multicast tree connecting the sender of the probes to a set of receivers. These estimates are, initially,

derived under the assumption that link losses are described by independent Bernoulli losses, in which case

the problem is that of estimating the link loss rates given the end-to-end losses for a series of n probes. We

show that these estimates are strongly consistent (converge almost surely to the true loss rates). Moreover,

the asymptotic normality property of MLEs allows us to derive an expression for their rate of convergence

to the true rates as n increases.

We evaluate our approach for two-, four-, and eight-receiver populations through simulation in two

settings. In the first type of experiment, link losses are described by time-invariant Bernoulli processes.

Here we find rapid convergence of the estimates to their actual values as the number of probes increases.

The second type of experiment is based on ns [18] simulations where losses are due to queue overflows as

probe traffic competes with other traffic generated by infinite data sources that use the Transmission Control

Protocol (TCP) [24]. In the two- and four- receiver topologies with few background connections we find fast

convergence although there are persistent, if small, differences between the inferred and actual loss rates.

The cause of these differences is that losses in our simulated network display spatial dependence (i.e.,

dependence between links), which violates the Bernoulli assumption. We believe that large and long-lasting

spatial dependence is unlikely in a real network such as the Internet because of its traffic and link diversity.

This is supported by experiments with an eight-receiver topology with diverse background traffic in which

we found closer agreement between inferred and actual loss rates. Furthermore, we believe that the intro-
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duction of Random Early Detection (RED) [6] policies in Internet routers will help break such dependence.

The potential for both spatial and temporal dependence of loss motivates investigation into their effect.

Our analysis shows that dependence introduces inference errors in a continuous manner: if the dependence

small, the errors in the estimates are also small. Furthermore, the errors are a second order effect: in the

special case of a binary tree with statistically identical dependent loss on sibling links, the Bernoulli MLE

of the marginal loss rates are actually unaffected for interior links of the tree. More generally, the MLE will

be insensitive to spatial dependence of loss within regions of similar loss characteristics. Furthermore, the

analysis shows how prior knowledge of the likely magnitude of dependence–e.g. from independent network

measurements–could be used to correct the Bernoulli MLE.

We note that interference from TCP sources introduces temporal dependence (i.e., dependence between

different packets) that also violates the Bernoulli assumption. This dependence is apparent in our simulated

network, where probe losses often occur back-to-back due to burstiness in the competing TCP streams.

Such dependence has also been measured in the Internet, but rarely involves more than a few consecutive

packets [1]. The consistency of the estimator does not require independence between probes; it is sufficient

that the loss process be ergodic. This property holds, e.g., when the dependence between losses has suffi-

ciently short range. However, the rate of convergence of the estimates to their true values will be slower.

We quantify this for Markovian losses by applying the Central Limit Theorem for the occupation times of

Markov processes. We use this approach to compare the efficacy of two sampling strategies in the presence

of Markovian losses. In our experiments, inferred loss rates closely tracked actual losses rates despite the

presence of temporal dependence.

The work presented in this paper assumes that the topology of the multicast tree is known in advance.

We are presently developing algorithms to infer the multicast tree from the probe measurements themselves.

We envisage deploying inference engines as part of a measurement infrastructure comprising hosts ex-

changing probes in a WAN. Each host will act as the source of probes down a multicast tree to the others.

A strong advantage of using multicast rather than unicast traffic is efficiency. N multicast servers produce

a network load that grows at worst linearly as a function of N . On the other hand, the exchange of unicast

probes can lead to local loads which grow asN �, depending on the topology. We illustrate this in Figure 1.

In this example, �N servers exchange probes. For unicast probes, the load on central link grows asN �; for

multicast probes it grows only as �N .

Related Work. There are a number of measurement infrastructure projects in progress, all based on the ex-

change of unicast probes between hosts in the current Internet. Two of these, IPMA (Internet Performance

Measurement and Analysis) [7] and Surveyor [28], focus on measuring loss and delay statistics; in the for-

mer between public Internet exchange points, in the latter between hosts deployed at sites participating in

Internet 2. A third, Felix [5], is developing linear decomposition techniques to discover network topology,
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Figure 1: PROBE METHOD, LOAD AND TOPOLOGY: �N servers exchange probes. For unicast probes,
load on central link grows asN �; for multicast probes it grows only as �N .

with an emphasis on network survivability. A fourth, NIMI (National Internet Measurement Infrastruc-

ture) [13], concentrates on building a general-purpose platform on which a variety of measurements can be

carried out. These infrastructure efforts emphasize the growing importance of network measurements and

help motivate our work. We believe our multicast-based techniques would be a valuable addition to these

measurement platforms.

There is a multicast-based measurement tool, mtrace [16], already in use in the Internet. mtrace reports

the route from a multicast source to a receiver, along with other information about that path such as per-hop

loss and delay statistics. Topology discovery through mtrace is performed as part of the tracer tool [12].

However, mtrace suffers from performance and applicability problems in the context of large-scale mea-

surements. First, mtrace traces the path from the source to a single receiver by working back through the

multicast tree starting at that receiver. In order to cover the complete multicast tree, mtrace would need to

run once for each receiver, which does not scale well to large numbers of receivers. In contrast, the inference

techniques described in this paper cover the complete tree in a single pass. Second, mtrace relies on mul-

ticast routers to respond to explicit measurement queries. Current routers support these queries. However,

Internet service providers may choose to disable this feature since it gives anyone access to detailed delay

and loss information about paths in their part of the network. In contrast, our inference techniques do not

rely on cooperation from any network-internal elements.

We now turn our attention to related theoretical work on inference methodologies. There has been

some ad hoc, statistically non-rigorous work on deriving link-level loss behavior from end-to-end multicast

measurements. An estimator proposed in [33] attributes the absence of a packet at a set of receivers to loss

on the common path from the source. However, this is biased, even as the number of probes n goes to

infinity.

For a different problem, some analytic methods for inference of traffic matrices have been proposed

quite recently [30, 31]. The focus of these studies was to determine the intensities of individual source-

destination flows from measurements of aggregate flows taken at a number of points in a network. Although
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there are formal similarities in the inference problems with those of the present paper, the problem addressed

by the other papers was substantially different. The solutions are not always unique or easily identifiable,

sometimes needing supplementary methods to identify a candidate solution. This was a consequence of a

combination of the coarseness of the data (average data rates in the class of Poissonian traffic processes) and

the generality of the network topology considered.

Structure of the Paper. The remainder of the paper is structured as follows. In Section 2 we present a loss

model for multicast trees and describe the framework within which analysis will occur. Section 3 contains

the derivation of the estimators themselves; the specific example of the two-leaf tree is worked out explicitly.

Section 4 analyzes the rates of convergence of estimators as the number of probes is increased. In particular,

we obtain a simple approximation for estimator variance in the regime of small loss probabilities. In Section

5 we present an algorithm for computing packet loss estimates, and tests for consistency of the data with the

model. Section 6 presents the results of simulation experiments that validate our approach. Motivated in part

by the experimental results, we continue by examining the effects of violation of the Bernoulli assumption.

In Section 7 we analyze the effects of spatial dependence on our estimators. We show how to correct for

them on the basis of some a priori knowledge of their magnitude; we show that in any case they deform

the estimates based on the Bernoulli assumption only to second order. In Section 8 we analyze the effect

of temporal dependence on the loss process. We show that the asymptotic accuracy of the Bernoulli-based

estimator is unaffected, although it may converge more slowly. We conclude in Section 9 with a summary

of our contributions and proposals for further work. Some of the proofs are deferred to Section 10.

2 Model & Framework

2.1 Description of Logical Multicast Trees

Let T � �V� L� denote the logical multicast tree from a given source, consisting of the set of nodes V ,

including the source and receivers, and the set of links L. A link is ordered pair �j� k� � V � V denoting a

link from node j to node k. The set of children of a node j is denoted by d�k� (i.e. d�j� � fk � V � �j� k� �

Lg). For each node j � V apart from the root �, there is a unique node k � f�j�, the parent of j, such that

�j� k� � L. We shall define fn�k� recursively by fn�k� � f�fn���k��. We say that j is a descendant of k

if k � fn�j� for some integer n � �.

The root � � V will represent the source of the probes. The set of leaf nodes R � V (those with no

children) will represent the set of receivers. The logical multicast tree has the property that every node has

at least two descendants, apart from the root node (which has one) and the leaf-nodes (which have none).

On the other hand, nodes in the full (as opposed to logical) multicast tree can have only one descendant.

The logical multicast tree is obtained from the full multicast tree by deleting all nodes which have a single

child (apart from the root �) and adjusting the links accordingly. More precisely, if i � f�j� � f ��k� are
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Figure 2: (a) A multicast tree with two receivers. (b) The corresponding logical multicast tree.

nodes in the full tree and �d�j� � �, then we assign to the logical tree only the nodes i� k and the link �i� k�.

Applying this rule to all such i� j and k in the full multicast tree yields the logical multicast tree.

A two receiver example is illustrated in Figure 2. A source multicasts a sequence of probes to two

receivers, R� and R�. The probes traverse the multicast tree illustrated in Figure 2(a). Figure 2(b) illustrates

the logical multicast tree, where each path between branch points in the tree depicted in Figure 2(a) has been

replaced by a single logical link.

2.2 Modeling the Loss of Probe Packets

We model the loss of probe packets on the logical multicast tree by a set of mutually independent Bernoulli

processes, each operating on a different link. Losses are therefore independent for different links and dif-

ferent packets. In the introduction we discussed the reasons why network traffic can be expected to violate

these assumptions; in Sections 7 and 8 we discuss the extent to which they affect the estimators described

below, and how these effects can be corrected for.

We now describe the loss model in more detail. With each node k � V we associate a probability

�k � ��� �� that a given probe packet is not lost on the link terminating at k. We model the passage of

probes down the tree by a stochastic process X � �Xk�k�V where each Xk takes a value in f�� �g;Xk � �

signifies that a probe packet reaches node k, and � that it does not. The packets are generated at the source,

so X� � �. For all other k � V , the value of Xk is determined as follows. If Xk � � then Xj � � for

the children j of k (and hence for all descendants of k). If Xk � �, then for j a child of k, Xj � � with

independent probability �j , and Xj � � with probability �j � � � �j . (We shall write � � a as a in

general). Although there is no link terminating at �, we shall adopt the convention that � � � �, in order to

avoid excluding the root link from expressions concerning the �k. We display in Figures 3 and 4 examples

of two- and four-leaf logical multicast trees which we shall use for analysis and experiments.
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Figure 4: A four-leaf logical multicast tree

2.3 Data, Likelihood, and Inference

In an experiment, a set of probes is dispatched from the source. We can think of each probe as a trial, the

outcome of which is a record of whether or not the probe was received at each receiver. Expressed in terms

of the random process X , each such outcome is the set of values of Xk for k in the set of leaf nodes R, i.e.

the random quantity X�R� � �Xk�k�R, an element of the space � � f�� �gR of all such outcomes. For a

given set of link probabilities � � ��k�k�V , the distribution of the outcomes �Xk�k�R will be denoted by

P�. The probability mass function for a single outcome x � � is p�x��� � P��X�R� � x�.

Let us dispatch n probes, and, for each possible outcome x � �, let n�x� denote the number of probes

for which the outcome x obtained. The probability of n independent observations x�� � � � � xn (with each

xm � �xm
k
�k�R) is then

p�x�� � � � � xn��� �
nY

m��

p�xm��� �
Y

x��

p�x���n�x� (1)

Our task is to estimate the value of � from a set of experimental data �n�x��x��. We focus on the

class of maximum likelihood estimators (MLEs): i.e. we estimate � by the value �� which maximizes

p�x�� � � � � xn��� for the data x�� � � � � xn. Under very mild conditions, which are satisfied in the present situ-

ation, MLEs exhibit many desirable properties, including strong consistency, asymptotic normality, asymp-

totic unbiasedness, and asymptotic efficiency (see [11]). Strong consistency means that MLEs converge

almost surely (i.e., with probability 1) to their target parameters as the sample size increases. The last three

properties mean that, if the sample size is large, we can compute confidence intervals for the parameters

at a given confidence level, the estimators are approximately unbiased, and there is no other estimator that

would give the same level of precision with a smaller sample size.

Because of these properties, when a parametric model is available, MLEs are usually the estimators of

choice. Moreover, the confidence intervals allow us to estimate the accuracy of the estimates of �, and in
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particular their rate of convergence to the true parameter � as the number of samples n becomes large. This

is important for understanding the number of probes which must be sent in order to obtain an estimate of �

with some desired accuracy. Furthermore, in view of the possibility of large time-scale fluctuation in WANs,

e.g. Internet routing instabilities as reported by Paxson [19], the period over which probes are sent should

not be unnecessarily long.

3 The Analysis of the Maximum Likelihood Estimator

In this section we establish the form of the MLE and determine the rate at which it converges to the true

value as the number of probes increases; this can be used to make prediction for given models, and also

to estimate the likely accuracy of estimates derived from actual data. We work this out completely for the

two-leaf tree of Figure 3.

3.1 The Likelihood Equation and its Solution

It is convenient to work with the log-likelihood function

L��� � log p�x�� � � � � xn��� �
X
x��

n�x� log p�x���� (2)

In the notation we suppress the dependence of L on n and x�� � � � � xn. Since log is increasing, maximizing

p�x�� � � � � xn��� is equivalent to maximizing L���.

We introduce the notation that k � k � for k� k� � V whenever k is a descendant of k� or k � k� and

k � k� whenever k � k� but k �� k�. We shall say that a link k is at level � � ��k� if there is a chain of �

ancestors k � f��k� � f�k� � f��k� � � �� f ��k� � � leading back to the root � of T . Levels � and � have

only one node. We will occasionally use U to denote V n f�g. Let T �k� � �V �k�� L�k�� denote the subtree

within T rooted at node k. R�k� � R � V �k� will be the set of receivers which are descended from k. Let

��k� be the set of outcomes x in which at least one receiver in R�k� receives a packet, i.e.,

��k� � fx � � �
�

j�R�k�

xj � �g� (3)

Set �k � �k��� � P����k�	. An estimate of �k is

b�k �
X

x���k�

bp�x�� where bp�x� �� n�x�

n
� (4)

is the observed proportion of trials with outcome x. We will show that � can be calculated from � �

��k�k�V , and that the MLE


� � arg max��������RL��� (5)

25



can be calculated in the same manner from the estimates b�. The relation between � and � is as follows.

Define �k � P���k� j Xf�k� � ��. The �k obey the recursion

�k � �k � �k

Y
j�d�k�

�j � k � V nR� (6)

�k � �k � k � R� (7)

Then

�k � �k

��k�Y
i��

�f i�k�� (8)

Theorem 1 Let A � f��k�k�U � �k � 	g, and G � f��k�k�U � �k � 	 �k
 �k �
P

j�d�k� �j �k � U nRg.

There is a bijection � from A to G. Moreover, � and ��� are continuously differentiable.

The proof of Theorem 1 relies of the following Lemma whose proof is given in Section 10.

Lemma 1 Let C be the set of c � �ci�i���������imax with ci � �	� �� and
P

i ci � �. The equation ��� x� �Q
i��� cix� has a unique solution x�c� � �	� ��. Moreover, x�c� is continuously differentiable on C.

Proof of Theorem 1: The �k have been expressed as a function of the �k, and clearly �k � 	 �k � U

implies the conditions for G. Thus it remains to show that the mapping from A to G is injective. Let

Ak �
Q��k�

i�� �f i�k�. From (8) we have

�k � Ak � k � R� (9)

while combining (6) and (8) we find

Hk�Ak� �� �� ��� �k�Ak��
Y

j�d�k�

��� �j�Ak� � 	� k � U nR� (10)

Since Hk�Ak� �� � h��k�Ak� f�j��k � j � d�k�g� from Lemma 1, there is a unique Ak � �k which

solves (10). We recover the �k uniquely from the Ak by taking the appropriate quotients (and setting

A� � �� � �):

�k � Ak�Af�k�� k � U� (11)

Clearly � is continuously differentiable; that ��� is also follows from the corresponding statement for x�c�

in Lemma 1.

Candidates for the MLE are solutions of the likelihood equation for the stationary points � of L:

�L

��k

��� � 	� k � U� (12)

Theorem 2 When b� � G, the likelihood equation has the unique solution b� �� ����b��.
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Note that in the notation we have suppressed the dependence of �� and b� on n and x�� � � � � xn. We defer

the proof of Theorem 2 to Section 10. That done, we must complete the argument by showing that the

stationary point does have maximum likelihood. For this we must impose additional conditions. b� is not

precluded from being either a minimum or a saddle for the likelihood function, the maximum falling on the

boundary of ��� ���U . For some simple topologies we are able to establish directly that L��� is (jointly)

concave in the parameters at � � b�, which is hence the MLE ��. For more general topologies we use an

argument which establishes that b� � �� for all sufficiently large n, and whose proof also establishes some

useful asymptotic properties of b�.

If �k � � for some link k, then Xk � � for all j � R�k�, regardless of the values of �j for j descended

from k, and hence these cannot be determined. For this reason we now restrict attention to the case that all

�k � �, by passing to a subtree if necessary; see Section 5.

Theorem 3 Assume �k � ��� ��� k � U .

(i) The model is identifiable, i.e., �� �� � ��� ���R and P� � P�� implies � � ��.

(ii) As n��, ��� � and b�� �, P� almost surely.

(iii) Assume also �k � �� k � U . With probability 1, for sufficiently large n, �� � b�.

Maximum Likelihood Estimator for the Two-leaf Tree Denote the 4 points of � � f�� �g� by f��� ��� ��� ��g.

Then

b�� � bp���� 	 bp���� 	 bp����� b�� � bp���� 	 bp����� b�� � bp���� 	 bp����� (13)

The equations (10) for bAk in terms of the b�k can be solved explicitly; combining with (11) we obtain the

estimates

b�� �
b��b��

b�� 	 b�� � b��
�

�bp����	 bp������bp���� 	 bp�����

bp����
(14)

b�� �
b�� 	 b�� � b��

b��
�

bp����

bp���� 	 bp����
(15)

b�� �
b�� 	 b�� � b��

b��
�

bp����

bp���� 	 bp����
(16)

Note that although it is possible that b�� � � for some finite n, this will not happen when n is sufficiently

large, due to Theorem 3(ii).

There is a simple interpretation of the estimates in (15) and (16). With the bp’s replaced by their corre-

sponding true probabilities p, (15) would give the probability of receiving a probe at node 1, given that it

known to be received at node 2. For independent losses, this is just the marginal probability that the probe is

received at node 1. We have found, however, the corresponding formulas when there are more than 2 sibling

nodes do not allow such a direct interpretation.
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4 Rates of Convergence of Loss Estimator

4.1 Large Sample Behavior of the Loss Estimator

In this section we examine in more detail the rate of convergence of b� and the MLE �� to the true value �.

We can apply some general results on the asymptotic properties of MLEs in order to show that
p
n���� ��

is asymptotically normally distributed as n � �; some general properties of MLEs ensure that the same

hold for
p
n�b����, and with the same asymptotic variance. We can use these results in two ways. First, for

models of loss processes with typical parameters, we can estimate the number of probes required to obtain

an estimate with a given accuracy. Secondly, we can estimate the likely accuracy of b� from actual probe

data and associate confidence intervals to the estimates.

The fundamental object controlling convergence rates of the MLE �� is the Fisher Information Matrix at

�. This is defined for each � � ��� ���U as the�U -dimensional real matrix Ijk��� �� Cov

�
�L
��j

���� �L
��k

���
�

.

It is straightforward to verify that L satisfies conditions (see Section 2.3.1 of [27]) under which I is equal

to the following more convenient expression which we will use in the sequel:

Ijk��� � �E ��L
��j��k

��� (17)

On the other hand, a direct calculation of the asymptotic variance of b� follows from the Central Limit

Theorem. The random variables b� are asymptotically Gaussian as n�� with

p
n �b� � ��

D�� N ��� ��� (18)

where �jk � limn�� nCov�b�j� b�k�, for j� k � U . Here D�� denotes convergence in distribution. Since

by Theorem 1, ��� is continuously differentiable on G, then by the Delta method (see Chapter 7 of [27])b� � ����b�� is also asymptotically Gaussian, so establishing the first part of the following theorem. We

note that the matrices � and I����� agree on the interior of the parameter space, but, as we shall see below,

I��� may be singular on the boundary. Let Dij��� �
����i

��j
������ and DT denotes the transpose.

Theorem 4 (i) When �k � ��� �	� k � U , then as n��,

p
n �b�� ��

D�� N ��� ��� where � � D��� � � �DT ���� (19)

(ii) When �k � ��� ��� k � U then I��� is non-singular and I����� � �.

(iii) When �k � ��� ��� k � U ,
p
n ��� � �� converges in distribution as n � � to a �U -dimensional

Gaussian random variable with mean 0 and covariance matrix I �����.

Theorem 4 enables us to determine, for example, that asymptotically for large n, with probability �� �,

the b� will lie between the points

�k � z���

s
I��kk ���

n
� (20)

28



where z��� denotes the number that cuts off an area ��� in the right tail of the standard normal distribution.

This is used for a confidence interval of level � � �. As we are interested in a 95% confidence interval for

single link measurements, we take z��� � �.

Confidence Intervals for Parameters. With slight modification, the same methodology can be used to

obtain confidence intervals for the parameters b� derived from measured data from n probes. Following [4]

we use the observed Fisher Information:

bIjk�b�� � �
��L

��j��k
�b��� where b� � ����b��� (21)

Now, the proof of Theorem 2 (see particularly (57)) shows that the �L���k depend on the n�x� only through

the combinations nb�k . Hence the same is true for the ��L���j��k. Since P
b����k�� � ������b���k � b�k,

we have bI�b�� � I�b��.

We then use confidence intervals for b�k of the form

b�k � z���

s
I
��
kk �b��
n

� (22)

This allows us to find simultaneous confidence regions from the asymptotic distribution for � for a given

tree. An issue for further study is to understand how the confidence intervals change as the tree grows.

Example: Confidence Intervals for the Two-leaf Tree An elementary calculation shows that the inverse

of the Fisher information matrix governing the confidence intervals for models in (20) is

I
����� �

�BB�
���������������������

����
�����
��

�����
��

�����
��

����
����

�����
��

�����
��

�����
��

����
����

�CCA � (23)

Here, the order of the coordinates is ��� ��� ��. The inverse of the observed Fisher information governing

the confidence intervals for data in (22) is obtained by inserting (14)–(16) into (23). We note that in this

case I is singular at the boundaries �� � � and �� � �.

4.2 Dependence of Loss Estimator Variance on Topology

The variance of b� determines the number of probes which must be used in order to obtain an estimate of

a given desired accuracy. Thus it is important to understand how the variance depends on the underlying

topology. Growth of the variance with the size of the tree might preclude application of the estimator to

large internetworks. Long timescale instability has been observed in the Internet [19]; if the timescale

required for accurate measurements approaches that at which variability occurs, the estimator’s requirement

of stationarity would be violated. In this section we show that the asymptotic variance � of b� is independent

of topology for loss ratios approaching zero.
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Figure 5: ASYMPTOTIC ESTIMATOR VARIANCE AND

BRANCHING RATIO Depth 2 tree, 2 to 7 leaves. Variance
decreases towards linear approximation��� as branching
ratio increases.
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Figure 6: ASYMPTOTIC ESTIMATOR VARIANCE AND

TREE DEPTH Binary Tree of depth 2, 3 or 4. Variance
increases with tree depth.

The following theorem characterizes the behavior of � for small loss ratio, independently of the topology

of the logical tree. Set k�k � maxk�U �k . Set �jk � � if j � k and � otherwise.

Theorem 5 �jk � �k�jk �O�k�k�� as k�k � �.

Theorem 5 says that the variance of b� is, to first order in �, independent of topology. However, nothing

is said about higher order dependence, and in particular whether the difference between �jk and �k�jk

converges to zero uniformly for all topologies as �� �. For a section of trees we used computer algebra to

calculate the maximum asymptotic variance over linksmaxk �kk for a selection of trees, as a function of the

uniform Bernoulli probability�k � �. We use the notation T �r�� r�� � � � � rn� denote the tree of depth n� �

(depth = maximum level � of any leaf) with successive branching ratios �� r�� r�� � � � � rn, i.e. the root node

� has the single descendent node � which has r� descendents, each of which has r� descendents, and so on.

We show the dependence on branching ratio in Figure 5 for trees of depth 2. In these examples, increasing

the branching ratio decreases the variance. In Figure 6, we show the dependence on tree depth for binary

trees of depth 2, 3 and 4. In this example, estimator variance increases with tree depth, roughly linearly.

In all examples, estimator variance is approximately linear for � less than about 0.1, and independent of

topology, in keeping with Theorem 5. For larger � it appears from these examples that the change in

estimator variance of moving from simple topologies to more complex ones is governed by two opposing

effects; variance reduction with increasing branching ratio, and variance growth with increasing tree depth.

The reason for this appears to be that increasing the branching ratio increases the size of R�k� (the set of

leaf-nodes descended from k) so providing more data points for estimation, while increasing the tree depth

increases cumulative error per link in estimation.
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5 Data Consistency and Parameter Computation

In this section we address computational issues associated with the estimator b�. We specify consistency

checks which must be applied to the data before b� is computed. We describe an algorithm for computa-

tion of b� and discuss its suitability for implementation in a network, in particular the extent to which it is

distributable.

5.1 Data Consistency

In this section we describe tests for consistency of the empirical probabilities b� with the model. The valida-

tions of the methodology carried out in this paper are all within controlled simulations. So we do not address

here the additional consistency checks which would be required for applications to real network data, such

as tests for stationarity.

The rest of this section focuses on range checking and tree surgery. An arbitrary data set �n�x��x�� may

not give rise to b� � ����� ���U�. If this is because some of the b�k take values 0 or 1, then it can be dealt

with by reducing the tree. In particular, when one of the b�k is �, not all of the �k can be inferred from the

data. Those which cannot must be removed from consideration. In other cases, the data is not consistent

with the assumptions that loss occurs independently on different links. We discuss these now.

(i) If b�k � � for any k � V , we construct a new tree by deleting node k and all its descendants, and

perform the analysis on this pruned tree instead. We are unable to distinguish between the various

ways in which �k may be zero, e.g. �k � �, or �k � � but �j � � for children j � d�k�.

(ii) If b�k � � for any k � U then we can assign probability � to �k. Then, for the purposes of calculation

only, we consider a reduced tree obtained by excising node k in the same manner as nodes with a

single descendant are excised from the physical multicast tree to generate the logical multicast tree;

see Section 2.1.

(iii) Any b�k � � is a nonphysical value, since the link probabilities are required to lie in ��� �� (subject to (i)

and (ii) above). Theorem 3 tells us this will not occur for sufficiently large n. Thus in implementations

of the inference algorithm, this event may be used to trigger the dispatch of further probes.

(iv) The condition b�k �
P

j�d�k� b�j for any k � U n R prevents the calculation of bAk and hence also

link probabilities for links that include k as a vertex, namely b�k � bAk� bAf�k� and b�j � bAj� bAk

for j � d�k�. Instead, we estimate only the probabilities f�k�j � j � d�k�g on the composite

links from f�k� to the elements of d�k�, estimating��k�j � Aj�Af�k�� j � d�k�. The possibility

b�k �
P

j�d�k� b�k. is precluded by the relations (25) and (26) below. Equality occurs only if the

observed losses satisfy the strong dependence property that each packet reaching a receiver in R�k�

reaches no other receiver in R�k�.
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5.2 Computation of the Estimator on a General Tree

In this section we describe the algorithm for computing b� on a general tree. An important feature of the

calculation is that it can be performed recursively on trees. First we show how to calculate the b�k. Denote by

� bXk�i��k�R�i���������n the measured values at the leaf nodes of process X for n. Define the binary quantities

�bYk�i��k�V�i���������n recursively by

bYk�i� � bXk�i�� k � R (24)

bYk�i� �
�

j�d�k�

bYj�i�� k � V nR (25)

so that

b�k � n��
nX
i��

bYk�i�� (26)

For simplicity we assume now that b� � ����� ���U�, so that, if necessary, steps (i) and (ii) of Section 5.1

have been performed on the data and/or the logical multicast tree in order to bring it to this form. The

calculation of b� can be done by another recursion. We formulate both recursions in pseudocode in Figure 7.

The procedure find gamma calculates the bYk and b�k, assuming bYk initializes to bXk for k � R and �

otherwise. The procedure infer calculates the b�k . The procedures could be combined. The full set of link

probabilities is estimated by executing main(�) where node � is the single descendant of the root node �.

Here, an empty product (which occurs when the first argument of infer is a leaf node) is understood to

be zero. We assume the existence of a routine solvefor that returns the value of the first symbolic argument

which solves the equation specified in its second argument. We know from Theorem 1 that under the

conditions for b� a unique such value exists.

5.3 Implementation of Inference in a Network

The recursive nature of the algorithm has important consequences for its implementation in a network set-

ting. Observe that the calculation of b�k and Ak depends on X only through the � bYj�j�d�k�. Put another

way, if j is a child of k, the contribution to the calculation of b�k of all data measured at the set of receivers

R�j� descended from j, is summarized through bYj . In a networked implementation this would enable the

calculation to be localized in subtrees at a representative node, the computational effort at each node being

at worst proportional to the depth of the tree (for the node that is the representative for all distinct subtrees

to which it belongs).

Moreover, estimates from measurements at receivers R�k� descended from a node k are consistent with

those from the full set of receivers in the following sense. Executing main(k) yields the Ak calculated by

main(�) as the value for b�k. Thus is the effective probability that a probe traverse a (fictitious) link from the

root � directly to k. But when the full inference main(�) is performed, it is not hard to see that the b� obey

Ak �
Q��k�

i�� b�f i�k�, i.e the probability of traversing the path from � to k without loss.

32



procedure main (k ) f
find gamma ( k ) ;
infer ( k, � ) ;

g

procedure find gamma ( k ) f
foreach ( j � d�k� ) f

bYj = find gamma ( j ) ;
foreach ( i � f�� � � � � ng ) f

bYk�i� = bYk�i� � bYj�i� ;
g

g

b�k = n��
Pn

i��
bYk�i� ;

return bYk ;
g

procedure infer ( k, A ) ;
Ak = solvefor( Ak , ��� b�k�Ak� ==

Q
j�d�k���� b�j�Ak� );

b�k = Ak�A ;
foreach ( j � d�k� ) f

infer ( j , Ak ) ;
g

g

Figure 7: PSEUDOCODE FOR INFERENCE OF LINK PROBABILITIES

6 Simulation Results

We evaluated our inference techniques through simulation and verified that they performed as expected.

This work had two parts: model simulations and TCP simulations. In the model simulations, losses were

determined by time-invariant Bernoulli processes. These losses follow the model on which we based our

earlier analysis. In the TCP simulations, losses were due to queue overflows as multicast probes competed

with other traffic generated by infinite TCP sources. We used TCP because it is the dominant transport

protocol in the Internet [29]. The following two subsections describe our results from these two simulation

efforts.

6.1 Model Simulations

Topology. For the model simulations, we used ad hoc software written in C++. We simulated the two

tree topologies shown in Figures 3 and 4. Node 0 sent a sequence of multicast probes to the leaves. Each

link exhibited packet losses with temporal and spatial independence. We could configure each link with a

different loss probability that held constant for the duration of a simulation run. We fed the losses observed

by the leaves to a separate Perl script that implements the inference calculation described earlier.
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Figure 8: CONVERGENCE OF INFERRED LOSS PROBABILITIES TO ACTUAL LOSS PROBABILITIES IN

MODEL SIMULATIONS. Left: Two-leaf tree of Figure 3 with parameters �� � ����; �� � �� � ����.
Right: Selected links from four-leaf tree of Figure 4, with parameters �� � ����; �� � ���; �� � �� �

�� � �� � ����; �� � ���. The graphs show that inferred probabilities converge to within 0.01 of the
actual probabilities after 2,000 or fewer observations.

Convergence. Figure 8 compares inferred packet loss probabilities to actual loss probabilities. The left

graph shows results for all three links in our two-leaf topology, while the right graph shows results for

selected links in the four-leaf topology. In all cases, the inferred probabilities converge to within 0.01 of the

actual probabilities after 2,000 observations.

Figure 9 compares the empirical and theoretical 95% confidence intervals of the inferred loss proba-

bilities for the two-leaf topology. The empirical intervals were calculated over 100 simulation runs using

100 different seeds for the random number generator that underlies the Bernoulli processes. The theoretical

intervals are as predicted by (20). As shown, simulation matches theory extremely well – we show the two

graphs separately because the two sets of curves are indistinguishable when plotted together. For 2,000

observations, the confidence intervals lie with within 20% of the true probabilities.

It may seem that thousands of probes constitute too many network resources to expend and too long to

wait for a measurement. However, it is important to note that a stream of 200-byte packets every 20 ms

represents only 10 Kbps, equivalent to a single compressed audio transfer. Furthermore, a measurement

using 5,000 such packets lasts less than two minutes. There already exist a number of MBone “radio”

stations that send long-lived streams of sequenced multicast packets. In some cases we can use these existing

multicast streams as measurement probes without additional cost. Overall, we feel that multicast-based

inference is a practical and robust way to measure network dynamics.
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Figure 9: AGREEMENT BETWEEN SIMULATED AND THEORETICAL CONFIDENCE INTERVALS. Left:
Results from 100 model simulations. Right: Predictions from (20). The graphs show two-sided confidence
estimates at 2 standard deviations for link 2 of the four-leaf tree of Figure 4. Parameters were �� � ����;
�� � ���; �� � �� � �� � �� � ����; �� � ���. Simulation matches theory extremely well – the two sets
of curves are indistinguishable when plotted in the same graph.

6.2 TCP Simulations

Topology. For the TCP simulations, we used the ns network simulator [18]. We configured ns to simulate

tree topologies shown in Figures 3, 4 and 11. All links had 1.5 Mbps of bandwidth, 10 ms of propagation

delay, and were served by a FIFO queue with a 4-packet limit. Thus, a packet arriving at a link was dropped

when it found four packets already queued at the link.

In each topology, node 0 sent multicast probe packets generated by a source with 200-byte packets and

interpacket times chosen randomly between 2.5 and 7.5 msec. The leaf nodes received the multicast packets

and monitored losses by looking for gaps in the sequence numbers of arriving probes. We fed the losses

observed by the multicast receivers to the same inference implementation used for the model simulations

described above. We also had ns report losses on individual links in order to compare inferred losses with

actual losses.

In the two- and four-receiver topologies, each node maintained TCP connections to its child nodes.

These connections used the Tahoe variant of TCP, sent 1,000-byte packets, and were driven by an infinite

data source. Links to left children carried one such TCP stream, while links to right children carried two

TCP streams. The link between nodes 0 and 1 also carried one TCP stream.

In the eight-receiver topology, the traffic more more diverse, with 52 TCP connections between different

pairs of nodes, giving rise to approximately 8 connections per link on average.

Convergence. Figure 10 compares inferred loss rates to actual loss rates on selected links of our two- and
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Figure 10: TRACKING OF ACTUAL LOSS RATES BY INFERRED LOSS RATES IN TCP SIMULATIONS.
Left: Two-leaf tree of Figure 3. Right: Selected links from four-leaf tree of Figure 4 (some pairs of
probabilities are offset for clarity). The graphs show that the inferred loss rates closely track the actual loss
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WITH DIVERSE BACKGROUND TRAFFIC. LEFT: Eight-leaf binary tree. RIGHT: Close tracking of actual
loss rates by estimated loss rates as number of observations is increased up to 1,000.

four-leaf topologies. As shown, the inferred rates closely track the actual rates over 10,000 observations.

Figure 11 compares inferred and actual loss rates in the eight-receiver topology with diverse background

traffic; in this case the tracking is even closer.

We note that the inferred values are accurate even though queue overflows due to TCP interference

do not obey our temporal independence assumption. TCP is a bursty packet source, particularly in the

region of exponential window growth during a slow start [9]. In our simulations, multicast probes are often

lost in groups as they compete for queue space with TCP bursts. This phenomenon is readily apparent

when watching animations of our simulations with the nam tool [17]. Inspection of the autocorrelation

function of the time series of packet losses for a series of experiments predominantly showed correlation

indistinguishable from zero beyond a lag of 1 (i.e. greater than back-to-back losses). As we explain in more
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Figure 12: ACCURACY OF INFERENCE IN TCP SIMULATIONS. Left: Two-leaf tree of Figure 3. Right:
Four-leaf tree of Figure 4. The graphs show normalized root mean square differences between actual and
inferred loss rates, computed across 100 simulations. After an initial transient, inferred loss rates settle down
to within 8 to 15% (in the two-leaf tree) and 4 to 18% (in the four-leaf tree) of actual loss rates, depending
on the link. The RMS error was reduced to approximately 1% by modifying the MLEs to correct for spatial
loss dependence.

detail in Section 8, the estimator b� is still asymptotically accurate for large numbers of probes when losses

have temporal dependence of sufficiently short range. However, the rate of convergence of the estimates to

their true values will be slower.

Figure 12 shows the Root Mean Square (RMS) differences between the inferred and actual loss rates

in the two- and four-leaf topologies. These differences were calculated over 100 simulation runs using 100

different seeds for the random number generator that governs the time between probe packets. As shown,

the differences can drop significantly during the first 2,000 observations. However, at some point they level

off and do not drop much further, if at all. This persistence reveals a systematic, although small, error in the

inferred values because of spatial loss dependence. In our simulations, the same multicast probe is lost on

sibling links more often than the spatial independence assumption dictates. These dependent losses lead the

inference calculation to underestimate losses on the sibling links and to overestimate losses on the parent

link.

We can quantify the spatial loss dependence present in the simulations. We can also calculate the ef-

fect of such dependence on the inferred loss probabilities by extending our previous analysis. Thus a prior

estimate of the degree of dependence could be used to obtain corrections to the Bernoulli inference. We

discuss this in more detail for spatial dependence in Section 7 and give an example of how to apply the

correction. Applied to the inferences on the two-leaf tree summarized in Figure 10, they reduce an RMS

error of between 8 and 15% to one of around 1%. The key observation behind these analyzes is that the

error in the inferred values varies smoothly with the degree of spatial dependence. The greater the depen-

dence in the network, the larger the error. We can arrange for correlated losses in a simulated network,
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for example by creating synchronized interference streams on sibling links. However, the results for the

eight-receiver topology with diverse background traffic support our belief that large and long-lasting spatial

loss dependence is unlikely in real networks like the Internet because of their traffic and link diversity.

7 The Analysis and Correction of Spatial Dependence

7.1 Analysis of Spatial Dependence

When spatial dependence present in packet losses, the Bernoulli model assumption is violated. But even

with such dependence, we can still ask what are the marginal loss probabilities for each link separately.

In this section we quantify the effects of this dependence and show how they may be corrected for on the

basis of a priori knowledge of them. We propose that this knowledge should be obtained by independent

measurements on instrumented networks. Moreover, we establish that dependence deforms the Bernoulli

estimates continuously in the sense that small divergences from independence of the losses lead to small

divergence of the estimates of the marginal loss probabilities from their true values. For binary trees we find

that the effect of such dependence on the estimates of marginal loss probabilities for links in the interior

of the network is second order, and become negligible in regions of the network across which loss and

dependence change little.

One motivation for considering dependent losses comes from the well-known example of synchroniza-

tion between TCP flows which can occur as a result of the slow-start after packet loss; see [9]. Flows

which have experienced common loss on a link k will then have some degree of dependence. Viewed as

background traffic against which the probe packets compete, they can be expected to give rise to dependent

losses of probe packets on links on the subtree descended from k. However, the dependence of probe loss

can be expected to decrease on progressing down the tree from k. This happens if we assume that flows

which became dependent though losses a given node k typically have a spread of destination address; then

their paths through the network will subsequently diverge. Then the fraction of the total traffic contributed

on links descended from k will decrease on progressing down the tree from k; hence the dependent influence

of such flows on probe loss will decrease likewise.

The foregoing discussion motivates us to capture such dependence to first order by considering, within

the class of dependent loss processes, those for which dependence only occurs between losses on sibling

links, i.e., between those Xj and Xj� for which f�j� � f�j ��. Let � � ffj�� � � � jng � d�k�� k � V nRg

denote the set of subsets of sibling links. We characterize the joint distribution of the �X k�k�V through the

family of joint conditional probabilities ��k������kn�fj�����jng�� where for k � f�j�� � � � �� f�jn�,

�j������jn �� P�Xj� � �� � � � � Xjn � �jXk � �� (27)

(For Bernoulli loss, �j������jn �
Qn

m�� �jm ). We now derive analogous relations to (6) in this case. It is
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convenient to work initially with the quantities

�k �� P���k� j Xk � �� � P���k� j Xf�k� � ���P�Xk � � j Xf�k� � �� � �k��k (28)

For n � �d�k� let dn�k� denote the set of subsets of d�k� of cardinality n. By the Inclusion-Exclusion

Principle (see e.g. Chapter 5.2 of [25])

P���k�� � P
�
�j�d�k���j�

�
�

�d�k�X
n��

����n��
X

fj������jng�dn�k�

P ���j��� � � �� ��jn�� � (29)

from which we find using (27) and (28) that

�k �

�d�k�X
n��

����n��
X

fj������jng�dn�k�

�j������jn�j� � � � �jn (30)

Reexpressed in term of the �k we obtain the following analog of (10) for k � U nR:

Hk�Ak� �� �� �� �k�Ak �

�d�k�X
n��

����n��
X

fj������jng�dn�k�

�j������jn

�j� � � � �jn
An
k

� 	 (31)

where �j������jn � �j������jn���j� � � ��jn� and we write � � ��j������jn�fj������jng��. For a given loss model

one can in principle compute � and compute Ak from �k. Rather than do this, however, we establish some

structural results.

We can compare the actual values Ak��� which solve (31) for Ak , with those obtained from (10) with

the Bernoulli assumption, which we can write as Ak���. The following theorem shows that the deformation

from Ak��� to Ak��� is continuous in the neighborhood of the Bernoulli values � � � (i.e. � j������jn � �

for all fj�� � � � � jng � 
).

Theorem 6 Let �k � 	. There exists a neighborhood of � � � inR�� on which � �� Ak��� is continuous.

Proof of Theorem 6: The result then follows from the Implicit Function Theorem (see [26]) provided that

	AkHk�Ak���� �� �� �� 	. But Hk�Ak� �� �� � Hk�Ak� �� � h��k�Ak � f�j��k � j � d�k�g� appearing

in (10) and Lemma 1, and so the result follows from 	xh�x�c�� c� 
 	 as established during the proof of

Lemma 1.

7.2 Spatially Dependent Losses in Binary Trees

When T is a binary tree we can obtain explicit results. For k � U nRwrite� �k� � �jj� where d�k� � fj� j�g

Then from (31) we have

�k �

�
Ak� k � R

�j � �j� � ��k��j�j��Ak� k � U nR
(32)
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Let ���� be the true value of �, i.e. that obtained by combining (32) with (11). ���� is then the value

previously obtained using the Bernoulli assumption. Let k � � denote the single descendent of the root

node �.

Theorem 7 Let T be a binary tree.

(i) There is a bijection �� fromA to G such that ���
� ��� � ����, with �� � � from Theorem 1.

(ii)

�k��� �

��
�

����������� k � �

�k�����f�k��� k � R

�k����
�f�k�����k�� otherwise

(33)

Proof of Theorem 7: From (32), Ak��� � ��j � �j� � �k����j�j���k�� � Ak������k�. The form of (ii)

then follows from (11); this is used as the definition of ���
�

for (i).

Theorem 7(ii) has the interesting interpretation that in the interior of the network (i.e. except for node �

and the leaf-nodes) the error in using �k��� in place of �k��� is a second order effect. For the error depends

only on the on the relative magnitude of correlations at adjacent nodes through the quotient � �f�k�����k�. If

the link probabilities and dependencies are (approximately) equal at each node of the tree, then this quotient

will be (approximately) one, and so the Bernoulli estimate b�k��� �� ���
� �b�� will be (approximately) equal

to ���
� �b��, for interior k. Thus we see that the presence of dependent losses in binary trees perturbs the

Bernoulli-based estimator little for links within the interior of regions across which the degree of dependence

is similar. On the other hand, at the boundaries between such regions, a priori knowledge of the degree of

dependence can help make the estimates more accurate. This motivates future work both in simulation

studies and instrumentation of heterogeneous networks in order to establish the degree of dependence is

influenced by dynamic factors such as utilization, and (comparatively) static factors such link technology

and relative link speeds.

It is interesting to see that the TCP Simulations of the 4-leaf tree display some of the features one might

expect from the above discussion. Observe in the RHS of Figure 10 that for the leaf-links (6 and 7) the

inferred loss rate underestimates the actual loss rate, while for link 1 it overestimates it. For the interior link

3, the inferred and actual values are almost identical. This is consistent with the above discussion if � k � �

and �� � �f��� � ��. Note that for d�k� � fj� j �g,

�k � � �� �jj� � �j�j� �� E�XjXj� j Xk � �	 � E�Xj j Xk � �	E�Xj� j Xk � �	� (34)

In other words, �k � � iff Xj and Xj� are (conditional on Xk � �) positively correlated. We expect this to

be the case when synchronized losses occur as described at the start of this section.
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RMS difference from actual loss
adjusted original

link 1 0.012 0.142
link 2 0.009 0.114
link 3 0.007 0.089

Table 1: CORRECTING FOR SPATIAL DEPENDENCE: RMS proportional difference of inferred from actual
losses in ns simulation of two-leaf tree in Figure 3, after 10,000 probes. Adjustment of inference to account
for dependence (left column) shows order of magnitude improvement over original inference (right column)

7.3 Correction for Spatial Dependence in Binary Trees

If some knowledge of the degree of dependence in the traffic is available, then this can be used to adjust

the inferred loss probabilities accordingly. This motivates experimental studies of real networks with instru-

mented links in order to ascertain the magnitude of the dependence. We intend to undertake these experi-

ments in the future. Here we show how knowledge of dependence can be used to correct the Bernoulli-based

estimates of link probabilities for non-interior nodes. We consider the set of leaf-nodes fj� j �g � d�k�. Let

Yj have the the distribution of Xj conditioned on Xk � �. Suppose we know a priori an estimate b� for the

correlation of Yj and Yj� . Now the theoretical value of the correlation is

� �
Cov�Yj � Yj��p
Var�Yj�Var�Yj�

�
�jj� � �j�j�p
�j�j�j��j�

� ��k�

�
��

r
�j�j�

�j�j�

�
(35)

Thus we expect to improve our estimates b�j��� by using b�j���b��k� instead where ��k� is obtained from (35)

by using b� and b���� in place of � and �.

To test this approach, we measured the loss dependence in an ns simulation of 10,000 probes in the

two-leaf tree, then conducted 100 further ns simulations of 10,000 probes, and adjusted the inferred link

probabilities in this manner. Comparing the actual, adjusted, and originally inferred loss ratios we see this

provides improvement: the root mean square error goes down from between 8 and 15% (depending on the

link) to about 1% in this case; see Table 1.

8 Temporal Dependence and Convergence Rates

8.1 Ergodicity and Asymptotic Accuracy

In this section we investigate the impact of temporal dependence on the estimator b�. Denote by X�n� �

�Xk�n��k�V the (spatial) process of the nth probe. The first observation is that, if we replace the assumption

of independence between probes to merely assuming that the (temporal) process �X�n��n�N is stationary

and ergodic, then b� still converges to � almost surely as the number of observations grows to �. This is

because, by definition, the observed probabilities b� of the ergodic process converge almost surely to the long
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term averages. By stationarity, these are just the � � ���� as before, where the � are the (time)-marginal

distributions of the link probabilities. A simple argument involving the Inverse Function Theorem (e.g.,

see [26]) shows that ��� is continuous on ����� ���U�, and hence b� � � almost surely. Note we do not

rely on b� being the maximum likelihood estimator, with respect to some parameter space, for the marginal

probabilities� of the general process. Rather, we have shown that the Bernoulli estimator is asymptotically

accurate for stationary ergodic processes.

In the remainder of this section we examine the rate of convergence when X possesses temporal depen-

dence. In an application of the method to measurement on real networks however, inherent variability (due

do large scale events such as routing changes) may impose limits on the durations over which we can expect

the loss process to be stationary. For this reason it is important to understand in more detail the impact of

time-dependent packet loss on convergence rates. We propose to examine this through models. Markovian

models of packet loss have been proposed on the basis of observations of the Internet (e.g., see [1]), although

some longer bursts of losses were also found. We shall see that the price of temporal dependence is slower

convergence than for the Bernoulli case. One can understand this qualitatively from the fact that burstiness

in the packet loss processes means that the long-term average of b� takes longer to approach.

8.2 Convergence Rates for Markovian Congestion

The main tool in understanding convergence rates is the following. Let ���
k

denote the node k component

of ���, so that b�k � ���
k

�b��. Suppose now that the random variables b� are asymptotically Gaussian as

n�� with
p
n �b� � ��

D�� N ��� ��� (36)

where �jk � limn�� nCov�b�j� b�k�, for j� k � U . Here
D�� denotes convergence in distribution. Then by

the Delta method (see Chapter 7 of [27]), since ���
k

is continuously differentiable on G (see Theorem 1),

���
k

�b�� is also asymptotically Gaussian:

p
n ����

k
�b��� �k�

D�� N ��� �k�� where �k � r���
k

��� � � � r���
k

���� (37)

In the remainder of this section we establish (36) within the context of Markov loss processes, and perform

some explicit calculations for the 2-leaf tree.

We expand the class of loss processes as follows. We will define a Markov process �Y �n��n�N, where

Y �n� will describe the state of the network encountered by the nth probe; this description is used whether,

for example, the interprobe times are constant, variable or random. Y is constructed as follows. For each

k � U let �Yk�n��n�N be an independent Markov process on the state space f�� �g. We think of Yk�n� as

representing the state of link k at time n, taking the value � if the link is congested, � if it is not. A probe

that encounters a congested link is lost. We represent this by the process X � �Xk�n��k�U�n�N defined by
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letting Xk�n� be conditionally independent of �Xj�m�� Yj�m��
k�j�m�n given �Xf�k��n�� Yk�n��, with

�Xk�n� j Xf�k��n�� Yk�n�� �

�
�� Xf�k� � �
Yk�n�� Xf�k� � �

(38)

When Yk��� is Bernoulli with probability �k to be in the state �, then the X�n� are independent for each n,

with the Xk�n� distributed as described in Section 2.2. X is not a Markov process, but rather is a function

of the Markov process Y . Moreover, X�n� is a some function of Y �n� alone, which we denote by �. For

each k � U , let ��k� be the set of configurations y of Y such that ��y� has outcome ��y��R� in ��k�, i.e.,

��k� � fy � f�� �g�U � ��y��R� � ��k�g� (39)

Let Q denote the transition matrix for Y , i.e., Q � �k�UQ�k� is the Kronecker product of the transition

matrices of the individualYk . Let q�k� � f���k � �kg and let q � �k�Uq�k� be the corresponding product

distribution.

Theorem 8 With the above notation, assume �k � ��� �� for all k � U . Then (37) holds with

�jk �
X

y���j�

X
z���k�

�
qy��yz � qz� � 	

�X
m��

�Qm
yz � qy�qz

�
� (40)

where Qm denotes the m-step transition matrix.

Observe that in the Bernoulli case, the second term in (79) vanishes, while the first depends only on the

marginal probabilities �. This means that the first term in (79) gives rise to the diagonal elements of (23);

in what follows we can thus restrict our attention to the increase in the asymptotic variance as specified by

the second term.

We parameterize the transition matrix of Yk as

Q�k� �

�
�� �k�k �k�k
�k�k �� �k�k

�
� (41)

where �k � ��� ��maxf�k� �kg
. �k parameterizes the burstiness of Yk without changing its marginal

probabilities. Yk�m� and Yk�m � �� are positively (or negatively) correlated when �k � � (or �k 	

�). When �k � �, Yk is Bernoulli. By calculation of the matrix powers of Q�k� through its spectral

decomposition, we find that Qn�k�yzqz�k� is given by the matrix

�Qn�k�yz 
 � �nkF �k� �G�k�� where F �k� � �k�k

�
� ��
�� �

�
� G�k� � q�k�� q�k�� (42)

ExpandingQn � �k�UQ
n�k� and summing over n we find

�X
m��

�
�Qm

yz � qy�qz
�
�
X
W�U

g�W � ��k�WF �k���
�
�k�UnWG�k�

�
� (43)

where g��� � � and otherwise g�W � � �
Q

k�W �k�����
Q

k�W �k�.
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8.3 Example: the Two-leaf Tree

Taking gradients in (14)–(16) and reexpressing them in terms of � we find

r���
�
������ �

�����������

����
� r���

�
������ �

���� �� ���

����
� r���

�
������ �

���� ��� ��

����
� (44)

Using the notation �abc�, with a� b� c � f�� �g, to denote a value of Y �n�, we have from (13):

���� � f������ ������ �����g� ���� � f������ �����g� ���� � f������ �����g� (45)

For simplicity we set the �k and �k equal to �� �. Then (43) becomes

�X

m��

�
�Qm

yz � qy�qz
�
�

��

�� ��
F ���� F ���� F ��� (46)

	
��

�� ��
�F ���� F ����G��� 	 F ����G���� F ��� 	 G���� F ���� F ����

	
�

�� �
�F ����G����G��� 	 G����G���� F ��� 	 G���� F ����G���� �

Combining (44), (45) and (46) in (37) in (46) with Theorem 8

I��
��

�
�� ��� 	 ���� ���

�
� (47)

I��
��

� I��
��

�
�

�
(48)

�� � I��
��

	
����� 	 �� 	 ��� 	 �� � ��� 	 ����� 	 �� � ��� 	 �����

��� 	 ����� ���
(49)

�� � �� � I��
��

	
�����	 ��� 	 ����� 	 ���

��� 	 ����� ���
(50)

From (42), � is the geometric decay rate of correlations. We can interpret � � ���� � �� as the mean

correlation time of the losses; � � � for Bernoulli losses. In Figure 13 we display the increase in asymptotic

variance by plotting the ratio ���I
��

��
of the asymptotic variance with Markovian correlations to that without.

We do this for � � 
��� �� and � � 
�� ���. ���I
��

��
displayed very similar behavior. The ratio is increasing

in correlation time � , and in the link transmission probability �.

8.4 Temporal Dependence and Probing Methodology

An approach to avoiding the effect of temporal dependence would be to time probes at intervals larger than

the typical correlation time of losses. Although this will reduce the number of probes required for a given

level of convergence, the absolute time of convergence may increase due to the increased time between

probes. Increasing the probes spacing by a factor � �, but with all probes lying within a given measurement

period would increase the variance of the estimates by a factor � � for independent losses. With Markovian

losses, the effect of dependence between probes could be ameliorated by taking � � � � , the correlation
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Figure 13: IMPACT OF TEMPORAL DEPENDENCE ON CONVERGENCE OF ESTIMATES: The ratio ���I
��

��

of the asymptotic variances of b�� with and without temporal dependence. Ratio is increasing in correlation
time � , and in link transmission probability �.

time. But for the two-leaf tree we see from (47) that when � � �, then �k�I
��

kk
� ���� � �� � � for

k � �� �� �. Thus for small loss probabilities, the slow-down in the rate of convergence of b� is no worse than

that obtained by spacing probes to be approximately independent. In this example then, one may as well use

all probes irrespective of their mutual dependence, rather than try to space them out to avoid dependence.

We envisage that direct measurement of the correlation time of received probes could be used, in combi-

nation with calculations of the previous section, to determine the number of probes, in an ongoing measure-

ment, that are required in order to infer the link probabilities for a given accuracy. In the example considered

we have seen that in order to estimate the increase in the asymptotic variation due to dependence between

losses of small probability, it is sufficient to determine the correlation time of observed losses. When losses

are heterogeneous, this will be conservative, since the autocorrelation will be dominated by the component

with slowest decay.

A related issue is the randomization of interprobe times in order to avoid bias in the selection of network

states which are observed via the probes. Probes with exponentially distributed spacings will see time

averages; this is the PASTA property (Poisson Arrivals See Time Averages; see e.g. [32]). This approach

has been proposed for network measurements [23] and is under consideration in the IP Performance Metrics

working group of the IETF [8]. In the context of the above discussion, lengthening the interprobe time is to

be understood as increasing the mean of the exponential distribution.

9 Summary and Future Work

In this paper, we introduced the use of end-to-end measurements of multicast traffic to infer network-internal

characteristics. We developed statistically rigorous techniques for estimating packet loss rates on internal

links, and validated these techniques through simulation. We showed that the inferred values quickly con-

verged to within a small error of the actual values. We also presented evidence that our techniques yield

accurate results even in the presence of moderate levels of temporal and spatial loss dependence.
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We are extending our work in several directions. First, we are applying multicast-based inference to

metrics other than packet loss. In particular, we have developed estimators for link delay. We are also

investigating ways to infer link bandwidth and network topology using multicast probes. The ability to

determine topology would free our measurements from the assumption of a priori knowledge of topology or

of a separate topology-discovery tool.

Second, we plan to do more extensive simulations. We plan to substitute RED queueing for FIFO queue-

ing to study the effect of RED on loss dependence. We also plan to substitute Poisson probes for CBR probes

to avoid inadvertent synchronization of the probe traffic with periodic network processes. At the same time,

we plan to simulate more complex topologies than the simple examples used throughout this paper. Topolo-

gies other than complete binary trees would stress our MLE for general trees, while larger topologies would

test the convergence properties of our techniques on larger problem instances. This will be complemented

by a theoretical analysis of the dependence of convergence rates on topology. Furthermore, we would like to

explore how closely loss rates experienced by our probes agree with loss rates experienced by other network

applications and protocols, for example TCP. We expect that our multicast-based measurements will yield

ambient loss rates that are meaningful in a broad context.

Third, we plan to experiment with multicast-based inference on the Internet. As a preliminary step, we

plan to measure ambient dependence in the real network, and determine the extent to which we need to adapt

our estimates to their presence. We also plan to deploy our inference tools in multicast-enabled portions of

the Internet, including the MBone, to test our techniques on a real network.

Finally, we would like to integrate our inference tools with one or more of the large-scale measurement

infrastructures under construction. NIMI seems particularly suited because of its intended role as a general

framework where many types of measurement can be carried out. The challenge will be to adapt a unicast-

based infrastructure to perform multicast-based measurements, and in particular to schedule measurements,

collect results, and perform inference calculations when large numbers of receivers are involved.

In conclusion, we feel that multicast-based inference is a powerful approach to measuring Internet dy-

namics. The rigorous statistical analysis behind our techniques gives them a firm theoretical footing, while

the bandwidth efficiency of multicast traffic gives them much desired scalability. Robust and efficient mea-

surements are increasingly important as the Internet continues to grow in size and diversity.

10 Proofs of Theorems

Proof of Lemma 1: Let h��x� � �� � x�, h��x� c� � h��x� �
Q

i
�� � cix�. Let qi � ci��� � cix�.

Then for x � ��� �� h��

�
�x� � �, h��

�
�x� � h��x�

n
�
P

i
qi�

�
�
P

i
q�
i

o
� �. Hence h�x� � h��x�� h��x� is

strictly concave on ��� ��. Now h��� � �, h��� � � and h���� � �� �
P

i
ci � �. So since h is concave

and continuous on ��� �� there must be exactly one solution to h�x� � � for x � ��� ��. Now set write
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h�x� c� � h��x��h��x� c�. Let x�c� be the unique solution to h�x�c�� c� � �. The above derivation implies

that h��x�c�� � ��h�x� c���x�jx�x�c� � �, so in particular, is different from �. Since h is continuously

differentiable, then by the Implicit Function Theorem [26], so is c �� x�c�.

Proof of Theorem 2: The idea is to split up the sum (2) into portions on which � log p�x�
��k

is constant. These

will be ��k�, the ��f i�k�� n ��f i���k�� for i � �� �� � � � � ��k�, and ����c.

Consider first the case that x � ��k�. Then �k occurs in p�x� as a factor, and hence � log p�x�
��k

� ���k.

When x � ��f i�k��n��f i���k�� for i � �� �� � � � � ��k�, then p�x� � �f i���k�Rk�x� where Rk�x� does not

depend on �k (or indeed on any �j for j � f i���k�. Hence for x � ��f i�k�� n ��f i���k��,

� log p�x�

��k

�
�

�f i���k�

��f i���k�

��k

(51)

Similarly, when x � ����c,
� log p�x�

��k

�
�

��

���
��k

(52)

On combining these:

�L

��k

�
�

�k

X
x���k�

n�x� �
�

��

���
��k

X
x�����c

n�x� (53)

�

��k�X
i��

��
�

�

�f i���k�

��f i���k�

��k

X
x���f i�k��n��f i���k��

n�x�

��
�

For the derivatives, some algebra with (7) shows that

��k
��k

� ��k��k� and (54)

��f i�k�

��k

�
�f i�k� � �f i�k�

�f i���k�

��f i���k�

��k

� �
�k
�k

iY
m��

�fm�k� � �fm�k�

�fm���k�
� (55)

The right hand term in equation (55) follows by iterating the middle term. Observe that

X
x���f i�k��n��f i���k��

n�x�

n
� b�f i�k� � b�f i���k� and

X
x�����c

n�x�

n
� �� b��� (56)

Combining (53), (54), (55) and (56) we get

�k

n

�L

��k

� b�k � �k

����k�X
i��

b�f i�k� � b�f i���k�
�f i���k�

i��Y
m��

�fm�k� � �fm�k�

�fm���k�
� (57)

Here we adopt the convention that the empty product for i � � means �, and that the symbol b�f��� that

occurs when i � � � ��k� means �.

Set �L
��k

for all k � V . For k � �, (57) yields � � b�� � ����� b������, whence

b�� � �� � ��� (58)
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For any other k, combining (57) for k and j � f�k� yields

b�k �
�k

�k

�b�j � b�k � ��j � �j�b�j
�j

�
� whence

b�kb�j �
�k�j

�j
�
�k

�j
� (59)

Together with (58) this gives b�k � �k for all k � V .

Proof of Theorem 3: (i) By the strong law of large numbers, b� � ����, P� almost surely, as n � �.

Since � is, in particular, bijective, then the model is identifiable, since ���� � ����� implies � � ��.

(ii) Convergence of b� to � (from (i)) and continuity of ��� (from Theorem 1) yield convergence of

b� � ����b�� to � � ������ as n � �. We now establish convergence of ��. Fix some �� � ��� ���U ,

M � ��� ���U , x � � and define

Z�M�x� � inf
���M

log
p�x	���

p�x	���
� log p�x	���� sup

���M

log p�x	���� (60)

Observe that p�x	�� is polynomial in the �k , and hence continuous. According to Lemma 7.54 in [27], it

suffices to show that, for each �� �� ��, there is an open set N�� containing ��, such that E��Z�N��� X� �

��. (Here E�� is the expectation w.r.t. P��).

Look at the two terms in E��Z�M�X� for any M � ��� ���U . The first is E�� log p�X 	��� �P
x�� p�x	�

�� log p�x	���. This is finite since p log p is bounded for p � 
�� �� and � is finite. For the sec-

ond term, note that p�x	��� � � � log p�x	��� � � � sup���M log p�x	��� � � �

� sup���M log p�x	��� � �� E��Z�M�X� � E�� log p�X 	��� � ��. Finally, we note that although it

is not mentioned there, Lemma 7.54 in [27] requires identifiability, which we proved in (i) above.

(iii) Now let � � ��� ���U be the true set of link probabilities. From part (ii), with P� probability �,

the MLE �� � � as n � �. Hence, for each sequence of probes we have that for n sufficiently large, ��

lies in the interior of ��� ���U . For such n, �� must then solve the likelihood equation (12). We know from

Theorem 2, that solutions of the likelihood equation are unique, and hence this �� � b�.

Proof of Theorem 4: (ii) Recall V �k� � fj � V � j 	 kg, R�k� � V �k� 
 R and U � V n f�g. Set

S��� � �Sk����k�U with Sk��� � �L
��k

��� (the score vector). Then Ijk��� � Cov�Sj���� Sk���� �

E��Sj���Sk���� since E��S�� �
P

x�� p�x� ��
�
��k

log p�x� �� �
P

x��
�
��k

p�x� �� � �.

Suppose that I��� is singular for some � � ��k�k�U � ��� ���U . Then there exists some nonzero

vector c � �ck�k�U for which c � I � c � �. But c � I � c is the variance of the mean-zero random variable

c � S���, so then we would have that c � S��� � �, P� almost surely, or equivalently

X
k�U

ck
� log p�x� ��

��k
� � �x � � (61)

since P��fxg� � � for all x � �. We show that, in fact, (61) implies ck � �, first for k � R, then for all

k � U .
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Let x��� � � be such that x���j � � for all j � R, and for some k � R let x���j � � for j �� k and � for

j � k. Then

p�x���� �� �
Y

j�U

�j while p�x���� �� � �k
Y

j�Unfkg

�j (62)

and so from (61) X
j�U

cj

�j
� � while �

ck

�k

�
X

j�Unfkg

cj

�j
� �� (63)

Combining the last two equations we find ck � �.

We now proceed by induction. For k � U assume that cj � � for all j � k. We now prove that ck � �.

Let x��� be as before, and set

x
���
j �

�
� j � R nR�k�
� j � R�k��

(64)

Then

p�x���� �� � ��k � �k�k�
Y

j�V nV �k�

�j (65)

where �k �
Q

j�d�k� �j � P��Xj � � �j � R�k� j Xk � ��. Hence from (61)

ck��k � ��

�k � �k�k
�
X

j�V nV �k�

cj

�j
� �� (66)

recalling the assumption that cj � � for all j � k. For the same reason (61) reads

ck

�k
�
X

j�V nV �k�

cj

�j
� �� (67)

Combining (66) and (67), then we find ck � �. The equality of � with I�� in the interior of the space of

parameters � is standard under the conditions established during the proof of Theorem 3; see, e.g., Chapter

6.4 of [11].

(iii) We refer to Theorem 7.63 of [27]. Clearly L is 3-times continuously differentiable on ��� ���U ,

and has bounded expectation in some neighborhood of �. This establishes the relation (7.64) in [27].
� log p�x���

��j�k
��� is clearly finite on ��� ���U. Hence I is finite in ��� ���U , so together with Theorem 3

and the non-singularity of I established in (ii) above, we are able to conclude the result.

Proof of Theorem 5: Let j � k denote the nearest common ancestor of j and k, i.e. j � k is the �-least

common upper bound of j and k. The proof proceeds by a number of subsidiary results. Since probes are

assumed independent, it suffices to evaluate all random quantities for n � � probes.

(i) As k�k � �,

�a� �� Ak � s�k� �O�k�k��	 �b� �k � O�k�k�� �c� �� �k � s�k� � O�k�k��� (68)
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where

s�k� �
X
j�k

�j � (69)

The relation (a) is clear by expanding Ak �
Q

j�k��� �j�. (b) follows by an inductive argument. Observe

from (6) that if (b) holds for all k � d�j�, it also holds for j. But since �k � �k for leaf-nodes k � R, (b)

holds for all k. (c) then follows from the relation �k � Ak���
Q

j�d�k� �j�.

(ii) As k�k � �,

Cov�b�j� b�k� � s�j � k� � O�k�k�� (70)

To see this, we write Cov�b�j �b�k� � E�b�jb�k�� E�b�j �E�b�k�, and E�b�j� � �j by definition. If k is an ancestor

of j then b�j � � � b�k � � and so E�b�jb�k� � �j . Similarly, if j is an ancestor of k, then E�b�jb�k� � �k.

Otherwise b�j � ��b�k � � � b�j�k � �, and so we write E�b�jb�k� � P�b�j � � j Xj�k � ��P�b�k � � j

Xj�k � ��P�Xj�k � �� � P�b�j � ��P�b�k � ���P�Xj�k � �� � �j�k�Aj�k. Thus,

Cov�b�j� b�k� �
��
�

�k��� �j� j � k

�j��� �k� k � j
�j�k���Aj�k � �� otherwise

(71)

(70) then follows from (68) and the fact that j � k � j when j � k.

(iii) As k�k � �,

D��� � D � O�k�k� where Djk ��

��
�

� k � j
�� k � f�j�
� otherwise

(72)

To establish this, note first thatD��� has inverseD����� whose elements are �D������ij � ��i���j �Now

��i���j � �i��j when j � i. When j � i, then from the proof of Theorem 2

��i
��j

� Ai

��i
��j

� Ai

�i
�j

��j����i�Y
m��

Y
k�d�fm�j��nfm���j�

�k (73)

From (68) (b), this goes to � as k�k � �. Finally, for all other j, �i does not depend on �i, and so the

derivative is �. Summarizing, as k�k � �,

D����� � eD � O�k�k� where eDij ��

�
� j � i

� otherwise
(74)

Since matrix inversion is continuous in an open neighborhood of the non-singular matrices, then (72) follows

if we can show that eDij and Dij are inverses. First
P

iDki
eDij � eDkj � eDf�k�j � �kj as required. SecondP

i
eDijDjk � eDik �

P
j�d�k�

eDik. The second term is only potentially non-zero when k � i. In this case

the only term that contributes to the sum is when j � i, giving��. Hence
P

i
eDijDjk � �ik as required.

(iv) By (iii), and continuity of finite dimensional matrix products, we have as k�k � � that

�ik �
X
j�j�

Dijs�j � j��Dkj� �O�k�k��� (75)
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It remains to evaluate

X
j�j�

Dijs�j � j��Dkj� � s�i � k�� s�i� f�k��� s�f�i�� k� � s�f�i�� f�k��� (76)

When i � k, then i � k � i, i � f�k� � f�i� � f�k� � f�i� and so (76) yields s�i� � s�f�i�� � �i,

All other possible i and k yield zero, as we now show. If i � k then i � k � f�i� � k � k, while

i � f�k� � f�i� � f�k� � f�k�, and hence (76) is zero. The case k � i is similar. In all other cases

i� k � i� k and so i � k � i � f�k� � f�i�� k � f�i�� f�k�.

Proof of Theorem 8: Since �k � ��� ��, each Yk��� is irreducible, and hence so is Y ���, and so q is

the unique stationary distribution for Q, i.e.
P

z Qyzqz � qy . For n probes, b�j �
P

y���j� bqy where

bqy � n��
P

m �y Y �m�. By the Central Limit Theorem for Markov processes, see e.g. Chapter 17 of [15], bq
is asymptotically Gaussian as n�� with

p
n �bq � q�

D�� N ��� �� (77)

where

�yz � lim
n��

nCov�bqy � bqz� � lim
n��

n��
nX

m��

nX
m���

Cov��y Y �m�� �z Y �m��� (78)

� qy��yz � qz� � �
�X

m��

�Qm
yz � qy�qz � (79)
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ABSTRACT
In this paper we consider the problem of inferring link-level loss
rates from end-to-end multicast measurements taken from a col-
lection of trees. We give conditions under which loss rates are
identifiable on a specified set of links. Two algorithms are pre-
sented to perform the link-level inferences for those links on which
losses can be identified. One, the minimum variance weighted av-
erage (MVWA) algorithm treats the trees separately and then aver-
ages the results. The second, based on expectation-maximization
(EM) merges all of the measurements into one computation. Simu-
lations show that EM is slightly more accurate than MVWA, most
likely due to its more efficient use of the measurements. We also
describe extensions to the inference of link-level delay, inference
from end-to-end unicast measurements, and inference when some
measurements are missing.

1. INTRODUCTION
As the Internet grows in size and diversity, its internal behavior be-
comes ever more difficult to characterize. Any one organization has
administrative access to only a small fraction of the network’s inter-
nal nodes, whereas commercial factors often prevent organizations
from sharing internal performance data. Thus it is important to
characterize internal performance from end-to-end measurements.

One promising technology that avoids these problems uses end-to-
end multicast measurements from a single tree to infer link-level
loss rates and delay statistics [1] by exploiting the inherent corre-
lation in performance observed by multicast receivers. A short-
coming of this technology is that it is usually impossible to include

∗This work was supported in part by DARPA under contract
F30602-00-2-0554 and F30602-98-2-0238, and by the National
Science Foundation under Grant EIA-0080119.

all links of interest in any one tree. Consider the network in Fig-
ure 1(a) as an example. In this network, end-hosts 0 and 1 are
sources, end-hosts 4 and 5 are receivers, and the set of links of in-
terest is {(2, 5) (3, 2)}. It is observed that both tree 1 and tree 2
are needed to cover the set of links of interest as illustrated in Fig-
ure 1(b) and 1(c). Therefore, in order to characterize the behavior
of a network (or even a portion of it), it is necessary to perform
measurements on multiple trees. Inferring link-level performance
from measurements taken from several trees poses a challenging
problem that is the focus of this paper.

0

4 5

1 0

4 5

1 0

4 5

1

(a) Network (b) Tree 1 (c) Tree 2

2 3
23 32

Internal Router End-host (Source) End-host (Receiver)

Figure 1: Single tree can not characterize a network

In this paper we address the following two problems. Given a col-
lection of multicast trees, can we infer the performance of all of
the links (or a specified subset) that are contained by the trees?
Second, when the performance of the links of interest can be iden-
tified, how do we obtain accurate estimates of their performance?
Focusing on loss rate as the performance metric, we introduce and
evaluate two algorithms. The first, the minimum variance weighted
average (MVWA) algorithm, performs inference on each tree sep-
arately and, for each link, returns a weighted average of the esti-
mates taken from the different trees. This procedure may not al-
ways be able to infer the behavior of links whose loss rates are,
nevertheless, identifiable. The loss rates for these links are ob-
tained as a solution to a set of linear equations involving the in-
ferred loss rates from individual trees. The second algorithm, the
expectation-maximization (EM) algorithm, on the other hand, ap-
plies the standard expectation-maximization technique [15] to the
measurement data taken from all of the trees. It returns estimates

53



of the loss rates of all identifiable links. We evaluate the two algo-
rithms through simulation studying their convergence rates and rel-
ative performance. We find that EM estimates are at least as accu-
rate than those produced by MVWA. The improvement is more pro-
nounced when either the number or measurements is small or the
distribution of measurements among the various trees is skewed.

Although the focus here is on link-level loss rates, we give exten-
sions to EM to handle link delay. In addition, we show how MVWA
and EM can be applied when end-to-end multicast measurements
are not available, or when some measurements are missing.

There is a related problem of how to choose the set of trees so as
to cover all of the links in the network (or subset of interest) in an
efficient manner. This question has been dealt with elsewhere, [2]
and is not considered here. We take as given the set of trees and
observations from which we are to draw inferences.

Network tomography from end-to-end measurements has received
considerable attention recently. In the context of multicast prob-
ing, the focus has been on loss, delay, and topology identifica-
tion. Extensions to unicast probing can be found in [6, 7, 8, 11,
13]. However, these have treated only individual trees. There are
techniques for round trip metrics such as loss rate and delay [14],
based on measurements taken from a single node. Last, linear alge-
braic methods have been proposed for estimating link-level average
round trip delays [19] and one-way delays, [12] . Neither of these
extend to other metrics. Furthermore, the latter only yields biased
estimates of average delays.

The remainder of the paper is organized as follows. Section 2
presents the model for a “multicast forest” (set of multicast trees).
In Section 3 we present necessary and sufficient conditions for
when the loss probabilities can be inferred from end-to-end multi-
cast measurements. The MVWA and EM algorithms are presented
in Section 4 along with convergence properties of the latter. Sec-
tion 5 presents the results of simulation experiments. Extensions to
delay inference, the use of unicast, and missing data are found in
Section 6. Last, Section 8 concludes the paper.

2. NETWORK AND LOSS MODEL
Let N = (V (N), E(N)) denote a network with sets of nodes
V (N) and links E(N). Here (i, j) ∈ E(N) denotes a directed
link from node i to node j in the network. Let Ψ denote a set of
multicast trees embedded in N , i.e., ∀T ∈ Ψ, V (T ) ⊆ V (N) and
E(T ) ⊆ E(N). We denote ∪T∈ΨV (T ) by V (Ψ) and ∪T∈ΨE(T )
by E(Ψ). Note that (i, j) ∈ E(Ψ) can appear in more than one
tree. For (i, j) ∈ E(N), we denote Ψi,j ⊆ Ψ the set of trees
which include link (i, j). Consider a tree T ∈ Ψ. Each node i in
T , apart from the root ρ(T ), has a parent in T , f(i, T ), such that
(f(i, T ), i) ∈ E(T ). The set of children of i in tree T is denoted
by d(i, T ). Let τi,T denote the subtree of T rooted at node i. Let
R(τi,T ) denote the receivers in subtree τi,T . We denote the path
from node i to j, i, j ∈ V (T ) in tree T by pT (i, j). Define a
segment in T to be a path between either the root and the closest
branch point, two neighboring branch points, or a branch point and
a leaf. We represent a segment by the set of links that comprises it.

For T ∈ Ψ, we identify the root ρ(T ) with the source of probes,
and the set of leaves R(T ) with the set of receivers. For a tree T ,
a probe is sent down the tree starting at the root. If it reaches node
j ∈ V (T ), a copy of the probe is produced and sent down the tree
toward each child of j. As a packet traverses link (i, j), it is lost

with probability 1−αi,j and arrives at j with probability αi,j . We
denote 1 − αi,j by αi,j . Let α = (αi,j)(i,j)∈E(Ψ). We assume
losses of the same probe on different links and of different probes
on the same link are independent, and that losses of probes sent
from the different sources ρ(T ), T ∈ Ψ are independent.

We describe the passage of probes down each tree T by a stochas-
tic process XT = (Xk,T )k∈V (T ) where Xk,T = 1 if the probe
reaches node k, 0 if does not. By definition Xρ(T ),T = 1. If
Xi,T = 0 then Xj,T = 0 for all j ∈ d(i, T ). If Xi,T = 1 then for
j ∈ d(i, T ), Xj,T = 1 with probability αi,j and Xj,T = 0 with
probability αi,j . We assume that the collection of trees is in canon-
ical form, namely that 0 < αi,j < 1, ∀(i, j) ∈ E(Ψ). An arbitrary
collection of trees can be transformed into one with canonical form.

In an experiment, a set of probes is sent from the multicast tree
sources ρ(T ), T ∈ Ψ. For each T ∈ Ψ, we can think of each
probe as a trial, the outcome of which is a record of whether or
not the probe was received at each receiver in R(T ). In terms of
the random process XT , the outcome is a configuration XR(T ) =
(Xi,T )i∈R(T ) of zeros and ones at the receivers. Notice that only
the values of XT at the receivers are observable; the values at
the internal nodes are unknown. Each outcome is thus an ele-
ment of the space ΩR(T ) = {0, 1}#R(T ). For a given set of link
probabilities α the distribution of XR(T ) on ΩR(T ) will be de-
noted Pα,T . The probability of a single outcome x ∈ ΩR(T ) is
p(x; α) = Pα,T [XR(T ) = x].

3. IDENTIFIABILITY
In order to perform tomography from measurements on the tree set
Ψ, we require that the link probabilities are determined from the
set leaf probabilities that are measured directly. We phrase this in
terms identifiability, which captures the property that link proba-
bilities can be distinguished by measurements from an infinite se-
quence of probes. We say that {Pα,T }T∈Ψ identifies α if for any
α′, {Pα,T }T∈Ψ = {Pα′,T }T∈Ψ implies α = α′. In this section,
we establish necessary and sufficient conditions for identifiability.

We are given a set of canonical trees Ψ with an associated link
success probability vector α = (αi,j)(i,j)∈E(Ψ). Let S be the set
of all segments within the trees contained in Ψ. Define βs to be
the logarithm of the probability that a packet successfully traverses
segment s ∈ S given that it reached the start of that segment,
βs = log(

∏
(i,j)∈s αi,j) =

∑
(i,j)∈s log αi,j . We introduce the

#S × #E(Ψ) matrix A where As,(i,j) = 1 if link (i, j) belongs
to segment s and 0 otherwise. Using the sets of trees in Figure 1
as an example, if we order the links as (0, 2) (2, 4) (2, 5) (1, 3)
(3, 5) (3, 2) and the segment as {(0, 2)} {(2, 4)} {(2, 5)} {(1, 3)}
{(3, 5)} {(3, 2), (2, 4)}, the matrix A is

A =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1




If we define z(i,j) = log αi,j , ∀(i, j) ∈ E(Ψ), we then have the
following equation

Az = β (1)

Here the components of z are z(i,j) and the components of β are
βs. Note that A needs not be a square matrix in general.
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Before stating and proving results on identifiability, we note that for
a given set of link probabilities α, there exists at least one solution,
namely z = log α, to (1). Let AT denote the matrix transpose of
A.

THEOREM 1. Let Ψ be a set of canonical loss trees. Then the
following are equivalent:

(i) For some α, {Pα,T }T∈Ψ identifies α.

(ii) Equation (1) has a unique solution z = (AT A)−1AT β.

(iii) Az = 0 iff z = 0.

(iv) For all α, {Pα,T }T∈Ψ identifies α.

Proof. (i)⇔(ii). First, we note that β is identifiable from {Pα,T }T∈Ψ

(Theorem 3 in [4]). Suppose that {Pα,T }T∈Ψ cannot identify α,
i.e., there are at least two sets of link probabilities, α and α′ that
are consistent with {Pα,T }T∈Ψ. Based on the derivation of (1)
there cannot exist an unique solution to (1). Similarly, if α is iden-
tifiable, it is obtained by solving (1). Suppose that (1) does not have
a unique solution. Then, from the derivation of (1) it follows that
there exist multiple values of α that can give rise to {Pα,T }T∈Ψ.
Suppose that there exists a unique solution to (1). It is easy to show
by contradiction that necessarily there is only one value of α that
can give rise to {Pα,T }T∈Ψ. For (ii) ⇔(iii), observe that (1) has
a unique solution if and only if the nullspace of A is in {0}. In
this case AT A is invertible, and the expression for z then follows
on pre-multiplying (1) by AT . (AT A)−1AT is the generalized in-
verse of A; see [16]. Furthermore, solutions of (1) must be unique
for all α, and hence (ii)⇔(iv).

It should be clear from this theorem that identifiability is a topo-
logical property, i.e., not dependent on the values α. We can use
this fact to select β at our convenience. Suppose we are interested
in identifying a set of links a set of links C ⊂ E(Ψ). Choosing
αi,j = e−1, ∀(i, j) ∈ E(Ψ) results in βs = #s. Hence we have:

THEOREM 2. Let Ψ be a set of canonical loss trees. {Pα,T }T∈Ψ

identifies (αi,j)(i,j)∈C iff there is a unique value of {z(i,j) : (i, j) ∈
C} that satisfies equation (1) for βs = #s, ∀s ∈ S.

4. LOSS INFERENCE
In this section, we describe two algorithms for loss inference in a
collection of multicast trees. In the first algorithm we perform in-
ference on each tree separately, and then we take the weighted aver-
age of the different estimates so obtained. In the second algorithm
we perform inference on the entire set of measurement from all of
the trees using the Expectation-Maximization (EM) algorithm.

4.1 Measurement Experiment
A measurement experiment for a collection of multicast trees Ψ
consists of sending nT probes from ρ(T ), T ∈ Ψ. For each T ∈
Ψ, we denote by xR(T ) = (x1

R(T ), . . . , x
nT
R(T )), (with xm

R(T ) =

(xm
k,T )k∈R(T )) the set measured of end-to-end loss down T . xR =

(xR(T ))T∈Ψ will denote the complete set of measurements.

4.2 Minimum Variance Weighted Average
A technique for loss inference for a single tree has been proposed in
[4]. For a given set of trees Ψ, we can proceed as follows: (1) con-
sider each tree T ∈ Ψ separately, by using the algorithm provided
in [4] on the measurements xR(T ); this yields estimates for all seg-
ments in T ; (2) combine the estimates from the different trees.

We first consider the problem of combining estimators of segment
transmission probabilities. Let s be a segment, and Ψs ∈ Ψ the
maximal set of topologies that include s as segment. Inference on
each logical topology T ∈ Ψs provides us with an estimate q̂s,T of
the transmission probability qs = eβs across the segment s. How
should the q̂s,T be combined to form a single estimate of qs?

We consider convex combinations of the form

q̂s =
∑

T∈Ψs

λT q̂s,T , λT ∈ [0, 1];
∑

T∈Ψs)

λT = 1. (2)

We propose to select the minimum variance combination as the sin-
gle estimator. By assumption, the q̂s,T are independent, and so

Var(q̂s) =
∑

T∈Ψs

λ2
T Var(q̂s,T ). (3)

Var(q̂s,T ) is clearly jointly convex in the (λT )T∈Ψs , and by ex-
plicit differentiation under the constraint

∑
T∈Ψs

λT = 1, the min-
imum for Var(q̂s) occurs when

λT =
Var(q̂s,T )−1∑

T ′∈Ψs
Var(q̂s,T ′)−1

(4)

Now, in general, Var(q̂s,T ) depends on the topology T . But it fol-
lows from Theorem 5 in [4] that the asymptotic variance nT Var(q̂s,T )
converges to qs + O(‖α‖2) as nT → ∞. Thus, for small loss
probabilities, we can use the approximation Var(q̂s,T ) ≈ n−1

T qs.
In this approximation, the coefficients λT ≈ nT /

∑
T ′∈Ψ(T ) nT ′ .

We will use this approximation in (2) as our minimum variance
weighted average algorithm (MVWA) algorithm, i.e.,

q̂s =

∑
T∈Ψs

nT q̂s,T∑
T∈Ψs

nT
(5)

We note two special cases: (i) s comprises a single link (i, j), in
which case the estimate is for the link rate αi,j ; (ii) only one tree
contains s, in which case the sums in (5) trivially have one term.

It remains to recover link probabilities from the q̂s. Following The-
orem 1, identifiable link probabilities αi,j are estimated by

log α̂i,j =
∑

s

A∗
(i,j),s log q̂s (6)

A simple example is when two segments s, s′ are such that s is
obtained by appending the link (i, j) to s′. Clearly A∗

(i,j),s = 1 −
A∗

(i,j),s′ with (6) reducing to taking quotients: α̂i,j = q̂s/q̂s′ .

4.3 EM Algorithm
Here we turn to a more direct approach to inference, namely, we
use the Maximum Likelihood Estimator to estimate α from the set
of measurements xR, i.e., we estimate α by the value α̂ which
maximizes the probability of observing xR.

Let nT (xR(T )) denote the number of probes for which the outcome
xR(T ) ∈ ΩR(T ) is obtained, T ∈ Ψ. The probability of the nT
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independent observations xR(T ) is then

p(xR(T ); α) =

nT∏
m=1

p(xm
R(T ); α)

=
∏

xR(T )∈ΩR(T )

p(xR(T ); α)nT (xR(T ))

and the probability of the complete set of measurement xR at the
receivers is

p(xR; α) =
∏

T∈Ψ

p(xR(T ); α). (7)

Our goal is to estimate α by the maximizer of (7), namely,

α̂ = arg max p(xR; α). (8)

In [4], a direct expression for α̂ are obtained for the case of a sin-
gle tree, i.e., when #Ψ = 1. For the general case, unfortunately,
we have been unable to obtain a direct expression for α̂. Instead,
we follow the approach in [7, 8], and employ the EM algorithm to
obtain an iterative approximation α̂(�), � = 0, 1, . . . , to α̂. To un-
derstand the idea behind the EM algorithm, assume that we can ob-
serve the entire loss process at each node, i.e., assume knowledge of
the values xT = (x1

T , . . . , xm
T ), (with each xm

T = (xm
k,T )k∈V (T )),

T ∈ Ψ. In this case estimation of α becomes trivial: with complete
data knowledge it is easy to realize that the MLE estimate of the
success probability αi,j along link (i, j), α̂i,j , is just the fraction
of probes successfully transmitted along (i, j), (i, j) ∈ E(Ψ), i.e.,

α̂i,j =

∑
T∈Ψi,j

nj,T∑
T∈Ψi,j

ni,T
(i, j) ∈ E(Ψ), (9)

where nk,T =
∑nT

m=1 xm
k,T is the number of probes sent from ρ(T )

which arrived to node k ∈ V (T ), T ∈ Ψ.

The EM algorithm assumes complete knowledge of the loss process
such that the resulting likelihood has a simple form. Since the com-
plete data, and thus the counts nk,T (except for the leaves nodes)
are not known, the EM algorithm proceeds iteratively to augment
the actual observations with the unobserved observation at the inte-
rior links. Below we briefly describe the algorithm and the intuition
behind it. We spell out the detail in Section7.

• Step 1. Select an initial link loss rate α̂(0). The simulation
study suggests the values that the algorithm converges to are
independent of α̂(0).

• Step 2. Estimate the (unknown) counts nk,T by n̂k,T =
Eα̂(�) [nk,T |xR]. In other words, we estimate the counts by
their conditional expectation given the observed data xR un-
der the probability law induced by α̂(�).

• Step 3. Compute the new estimate α(�+1) via (9), using the
estimated counts n̂k,T computed in the previous step in place
of the actual (unknown) counts nk,T . In other words, we set

α̂
(�+1)
i,j =

∑
T∈Ψi,j

n̂j,T∑
T∈Ψi,j

n̂i,T
(i, j) ∈ E(Ψ). (10)

• Step 4. Iterate steps 2 and 3 until some termination criterion
is satisfied. Set α̂ = α̂(�), where � is the terminal number of
iterations.

Tree Source Receivers
1 0 12 13 14 15 16 17 18 19
2 1 12 13 14 15 16 17 18 19
3 2 12 13 14 15
4 25 16 17 18 19

Table 1: Tree layout for model simulation

As shown in Section7, the EM iterates converges to a local (but
not necessarily) global maximizer of (7). However, our simulation
results suggests it always converge to the global maximizer α̂ and
the convergence does not depend on the initial values.

5. SIMULATION EVALUATION
We evaluate our loss inference algorithms using the ns [18] sim-
ulator. This work has two parts: model simulation and network
simulation. In the model simulation, losses are determined by time-
invariant Bernoulli processes. In the network simulation, losses are
due to congestion as probes compete with other background traffic.
The majority of the background traffic in the network simulation
is produced by TCP flows. However, we do include some on-off
flows where the on and off periods have either a Pareto or an ex-
ponential distribution. We chose such a mix because TCP is the
dominant transport protocol on the Internet.

0

3

1

42

6

5

7

8 9 10 11

12 13 14 15 16 17 18 19

Figure 2: Model simulation topology: Nodes are of three types;
bold ellipse: potential sender, ellipse: potential receivers, and
box: internal nodes.

5.1 Comparing loss probability
Our approach for comparing two sets of loss probabilities was first
introduced in [5]. Assume that we want to compare two loss prob-
abilities p and q. For example p could be an inferred probability
on a link, q the corresponding actual probability. For some error
margin ε > 0 we define the error factor

Fε(p, q) = max

{
p(ε)

q(ε)
,
q(ε)

p(ε)

}
(11)

where p(ε) = max{ε, p} and q(ε) = max{ε, q}. Thus, we treat p
and q as being not less than ε, and having done this, the error factor
is the maximum ratio, upwards or downwards, by which they differ.
Unless otherwise stated, we used the default value ε = 10−3 in this
paper. This choice of metric is motivated by the desire to estimate
the relative magnitude of loss ratios on different links in order to
distinguish those which suffer higher loss.

5.2 Model simulation
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The topology for model simulation is presented in Figure 2. A total
of four trees are embedded in the topology as described in Table 1.
A time-invariant Bernoulli loss processes is associated with each
link. In the simulation, uniform loss rates are assigned to all links.

We use loss rates of 2% and 4% on each link and let each source
send equal numbers of probes down to the trees. For each loss rate,
we vary the total number of probes sent by all sources from 50 to
1600. Each setting is simulated ten times with different random
seeds. For each simulation, we use both the MVWA and EM to es-
timate loss rates and compare with the actual simulation loss rates.

Figure 3 shows box-plots1 of error factors between inferred loss and
simulated loss over all links and all runs. In the figure, error factors
are displayed as a function of number of probes and one graph is for
each loss rate. (Note that the total number of probes increase ex-
ponentially). In each graph, we plot error factors for both MVWA
(abbreviated as WA) algorithm and EM algorithm. Observed from
graph that the estimates produced by EM algorithm show greater
accuracy and less variability than these produced by MVWA algo-
rithm under both loss rates we simulate when the number of probes
are small. However, as the number of probes increases, the esti-
mates yielded by both algorithm become more accurate, the dif-
ference between two algorithm become less, and their variability
reduces. The same set of simulations were done when the numbers
of probes in each tree are different. The results are very close to the
case where the numbers of probes are equal.

Note that every link in the topology described in Figure 2 is a seg-
ment in at least one of the trees. We also simulated a network em-
bedded by a collection of trees where some links are not a segment
in any trees even they are identifiable. The error factors we ob-
served are very similar to those presented in Figure 3.

Since the EM algorithm is more accurate and of less variability
than MVWA algorithm, we focus on evaluating EM algorithm in
next subsection.
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Figure 4: Small network simulation topology: Nodes are of
three types; bold ellipse: potential sender, ellipse: potential re-
ceivers, and box: internal nodes.

5.3 Network simulation
In this section, we simulate two topologies, a small network in Fig-
ure 4 and a multicast topology based on the Abilene network. In
both topologies, background traffic is generated by infinite TCP
and on-off UDP flows. All the routers in the network are config-

1In a box-plot, the box has lines at the lower quartile, median, and
upper quartile values. The whiskers are lines extending from each
end of the box to show the extent of the rest of the data. Outliers
are data with values beyond the ends of the whiskers.

Tree Source Receivers
1 0 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
2 1 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
3 2 20 21 22 23 24 25 26 27
4 5 28 29 30 31 32 33 34 35

Table 2: Tree layout for small network simulation

ured to be droptail routers since the droptail routers are prevalent in
the Internet.

Small network. The tree layout of the small network is described
in Table 2. We use constant bit rate probes and the interval between
probes is 100ms. We conducted a total of 7 simulations which dif-
fer according to the duration of the measurement. We start with an
initial duration of 2 seconds and double it each time until reaching
128 seconds. Each of these simulations is run 10 times with differ-
ent random seeds. For each simulation, we calculate the loss rates
using the EM algorithm.

The link losses in the set of simulations are due to all flows com-
peting for bandwidth. Since different types of flows may exhibit
different behavior, the probe flow does not necessarily suffer the
same loss rate as the background flows do. Therefore, the error of
using inferred loss to estimate the link loss may due to one of the
two possibilities. Either probe traffic loss rate differ from all traffic
loss rate or the estimates yielded by the EM algorithm do not agree
with the probe loss rate. In order to distinguish them, we compare
the inferred results to both probe loss rate and all traffic loss rate.

Figure 5 illustrates box plots of error factors for all links and all
simulation runs. The error factors are plotted as a function of mea-
surement time. On the left we show the error factor between in-
ferred and simulated all traffic loss; on the right between inferred
and simulated probe loss. We observe from both graphs in the fig-
ure that both the error factors and their variabilities decrease as the
number of probes increase. The improvements are more significant
for short measurements.

We present scatter plots for the all traffic loss vs. inferred loss
on the left and probe traffic loss vs. inferred loss on the right in
Figure 6 when the measurement duration is 128 seconds. We make
two observations. First, the inferred loss rate almost always over-
estimates the link loss rate. Second, the inferred loss rate provides
a very good estimate of the probe traffic loss rate. The difference
between the inferred loss rates and all traffic loss rates is due to that
the probe traffic endures a higher loss rate than the rest of traffic.
We conjecture that this is because the majority of the background
traffic come from infinite TCP flows. TCP reduces its sending rate
when the losses are detected. Therefore, fewer TCP packets will
suffer loss. However, the CBR source sends probes at a constant
rate which is not affected by congestion. We expect the algorithm
to be more accurate in the Internet since the Internet contains many
short lived TCP flows and many of them complete transmission
before they respond to losses.

Abilene network. Abilene [21] is an advanced backbone network
that supports the work of Internet2 universities as they develop ad-
vanced Internet applications. One major goal of Abilene is to pro-
vide a separate network to enable the testing of advanced network
capabilities prior to their introduction into the application develop-
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Figure 3: Accuracy of MVWA(WA) algorithm vs. EM: Box-plot of error factors over all links and all runs for loss rate 2%(left) and
4%(right).
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Figure 5: Accuracy of EM algorithm vs. probing time: Error factor over all links and all runs
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Figure 6: Small network scatter plot: inferred loss vs. all loss, inferred loss vs. probe loss
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ment network. Multicast is one among all such services. Abilene
supports native and sparse mode multicast. As of October 01, 2001,
Multicast protocols, PIM-sparse, MBGP and MSDP have been de-
ployed in the backbone. The Abilene multicast logical topology is
illustrated in [22]. It consists of 159 nodes and 165 edges. Each
node in the graph represents a physical location and each link rep-
resents a physical interconnection between some two routers from
different locations. Because the more detailed topology within each
physical location is not available to us, we treat each node as a
router and focus on the logical topology in our experiments. There
are three types of links in Abilene backbone, OC3 (155M), OC12
(622M) and OC48 (2.5G). The type of the links that connect par-
ticipants to backbone are not labeled and we assume they are T3
(45M). Since the ns simulator does not allow us to simulate enough
number of flows to fill up such high bandwidth links and generate
losses, we scale down the bandwidth proportionally by 108 times.
Last, we assume that only the leaves in the topology (i.e., node of
degree one) are senders or receivers.

We lay out a total of eight trees that can identify 41 links. An equal
number of probes is sent by each source and the interval between
probes is 200ms. We conducted a simulation of duration 256 sec-
onds and ran it ten times with different random seeds. For each
simulation, we estimate the loss rates using the EM algorithm and
compare them to the simulated loss rates. Figure 7 illustrates scat-
ter plots for inferred loss vs. all loss (left) and inferred loss vs.
probe loss (right). Similar to what we observed in small network
simulation, the EM algorithm provides accurate estimates of probe
loss rates. However, the inferred loss rates are almost always higher
than the simulated all traffic loss rates.

6. EXTENSIONS
In this section, we first extend the EM algorithm to infer the dis-
tribution of links delay. Second, since multicast is not supported
everywhere in the Internet and internal performance observed by
multicast packets may differ from that observed by unicast packets,
it is important to show our algorithms for inferring a set of multicast
trees can be applied to unicast measurements. Last, the algorithms
we presented so far rely on the availability of complete informa-
tion from the receivers. However, this may pose a serious problem
in their deployment. We demonstrate the use of our algorithms to
handle incomplete observations from receivers.

6.1 Delay inference
We now illustrate the use of end-to-end measurements from a col-
lection of multicast trees Ψ to estimate the delay characteristics of
internal links.

We associate with each link (i, j) a random variable Di,j which
represents the queueing delay that would be encountered by pack-
ets traversing link (i, j). For the analysis, we quantize the queueing
delay to a finite set of values Q = {0, q, 2q, . . . , Bq,∞}, where q
is a suitable fixed bin size. A queueing delay equal to ∞ indicates
that the packet is lost on the link. We define the bin associated
to iq ∈ Q to be the interval [iq − q/2, iq + q/2), i = 1, . . . , B,
and [Bq + q/2,∞) the one associated to the value ∞. Because
delay is non-negative, we associate with 0 the bin [0, q/2). We
thus model the link queueing delay by a nonparametric discrete
distribution that we can regard as a discretized version of the actual
delay distribution. We denote the distribution of Di,j by αi,j =
(αi,j(d))d∈Q, where αi,j(d) = P [Di,j = d], d ∈ Q. We will
denote α = (αi,j)(i,j)∈E(Ψ). We assume that queueing delays
are independent between different packets, and for the same pack-

ets on different links. Thus the progress of each probe down the
tree T is described by an independent copy of a stochastic process
YT = (Yk,T )k∈V (T ) which represents the accrued queueing delay
of packets. The queueing delay experienced by a packet from ρ(T )
to node i is Yi,T =

∑
(m,n)∈pT (ρ(T ),i) Dm,n where pT (ρ(T ), i)

denote the path on tree T from source to node i.

In an experiment, a set of probes is sent from the multicast tree
sources ρ(T ), T ∈ Ψ. For each T ∈ Ψ, we can think of each
probe as a trial, the outcome of which is a configuration of source
to receivers queueing delays YR(T ) = (Yk,T )k∈R(T ) we also dis-
cretize to the set Q. Each outcome is thus an element of the space
ΩR(T ) = Q#R(T ).

As with loss estimation, we use maximum likelihood estimation
based on measurements across the multicast tress T ∈ Ψ. Let us
dispatch nT probes from ρ(T ), T ∈ Ψ, and let nT (yR(T )) de-
note the number of probes for which the outcome yR(T ) ∈ ΩR(T )

is obtained. The probability of the nT independent observations
yR(T ) = (y1

R(T ), . . . , y
nT
R(T )), (with each ym

R(T ) = (ym
k,T )k∈R(T )),

is then

p(yR(T ); α) =

nT∏
m=1

p(ym
R(T ); α)

=
∏

yR(T )∈ΩR(T )

p(yR(T ); α)nT (yR(T ))

where p(y; α) = Pα[YT = yT ]. The probability of the complete
set of measurements yR = (yR(T ))T∈Ψ at the receivers is

p(yR; α) =
∏

T∈Ψ

p(yR(T ); α). (12)

Our goal is to estimate α by the maximizer of (12), namely,

α̂ = arg max p(yR; α). (13)

As with loss inference, we resort to the EM algorithm to obtain
an iterative solution α̂(�), � = 0, 1, . . . , to a (local) maximizer
of the likelihood (12). Assume complete knowledge of the delay
process at each link, namely the values yT = (y1

T , . . . , ym
T ), (with

each ym
T = (ym

k,T )k∈V (T )), T ∈ Ψ. Denote by ni,j,T (d) the total
number of packets sent by ρ(T ) that experienced a delay equal to
d along link (i, j). It is easy to verify that with complete data, the
MLE estimate of αi,j(d) is

α̂i,j(d) =

∑
T∈Ψi,j

ni,j,T (d)∑
T∈Ψi,j

∑
d∈Q ni,j,T (d)

∀(i, j) ∈ E(Ψ). (14)

Thus, with complete knowledge, the MLE estimate of αi,j(d) is
simply the fraction of the probes traversing link (i, j) which en-
countered a delay equal to d.

For delay inference the EM algorithm proceeds as for the loss case.
Below we briefly describe the algorithm and intuition behind it.
Details can be found in [3].

1. Step 1. Select the initial link delay distribution α̂(0).

2. Step 2. Given the current estimate α̂(�), Estimate the (un-
known) counts ni,j,T (d) by n̂i,j,T (d) = Eα̂(�) [ni,j,T (d)|yR].
In other words, we estimate the counts by their conditional
expectation given the observed data yR under the probability
law induced by α̂(�).
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Figure 7: Abilene scatter plot: inferred loss vs. all loss, inferred loss vs. probe loss

3. Step 3. Compute the new estimate α(�+1) via (14), using the
estimated counts n̂i,j,T (d) computed in the previous step in
place of the actual (unknown) counts ni,j,T (d).

4. Iteration. Iterate steps 2 and 3 until some termination cri-
terion is satisfied. Set α̂ = α̂(�), where � is the terminal
number of iterations.

Complexity
The complexity of the algorithm is dominated by the computation
the conditional expectations which can be accomplished in time lin-
ear with #V (T ) × #Q, T ∈ Ψ. The computation can be done by
extending the approach for computing loss conditional probability
and is described in [3].

Convergence
The conditions for convergence can be established similarly as for
loss inference.

6.2 Inference with unicast measurement
So far we have presented inference algorithms for a collection of
trees based on end-to-end multicast measurements. These tech-
niques can be extended to work with unicast measurements from
multiple sources as well.

The rationale behind unicast based inference is that: (1) measure-
ment domain is limited because large portions of the Internet do
not support network-level multicast, and that (2) the internal per-
formance observed by multicast packets may differs from that ob-
served by unicast packets. Techniques for unicast measurements
and inference have been recently proposed in [6, 11] for the in-
ference of loss rates and [7, 8, 9] for delay distributions. However,
these works only handle the inference of a single source with multi-
ple pairs of receivers and thus may pose severe limitations in scope.

The key idea behind unicast inference is to design unicast mea-
surement whose correlation properties closely resemble those of
multicast traffic, so that it becomes possible to use the inference
techniques developed for multicast inference; the closer the corre-
lation properties are to that of multicast traffic, the more accurate
the results.

A basic approach for unicast inference is to dispatch two back-to-
back packets (a packet pair) from a probe source to a pair of dis-
tinct receivers. For each such packet pair, the two packets traverse
a common set of links down a node where their paths diverge to the
two receivers. By choosing multiple sources and pairs of receivers,
it is possible to cover a more significant portion of a network than
with a single source. The inference for the link loss probability and
link delay distribution from a set of packet pair measurements is
formulated as a maximum likelihood estimation problem which is
then solved using the algorithms we presented earlier in the paper.
The idea, is that treat the unicast packet pair measurements as sta-
tistically equivalent to a notion multicast packet that descends the
same tree. The entire set of measurements is thus considered equiv-
alent to a set of multicast measurements down a collection of 2 leaf
trees. The analysis then follows the same approach for a collection
of trees detailed in Sections 4 and 6.1.

6.3 Inference with missing data
The algorithms presented in the paper so far rely on the availability
of complete information from the receivers. However, as described
in [10], this may pose a serious problem in their deployment. For
example, the loss reports from receives may be delivered unreli-
ably and there may be bandwidth constraints for transmitting loss
reports. Therefore, it is important to extend the algorithms to han-
dle incomplete data sets. An algorithm has been proposed in [10] to
handle incomplete data for a single tree. The goal of this section is
to extend the algorithms we proposed earlier in the paper to handle
incomplete data for a collection of trees.

The basic idea is first to convert each tree T ∈ Ψ with incomplete
observations to multiple sub-trees sharing the same source but with
complete observations. For tree T with incomplete data in a col-
lection of tree Ψ, assume that the outcomes of the kth probe sent
by ρ(T ) are only observable by Rk(T ) ⊆ R(T ). With probe k,
we associate the multicast tree Tk that spans the root ρ(T ) and
Rk(T ). This is obtained by finding the spanning tree of ρ(T ) and
Rk(T ) in T . Therefore, the tree T with incomplete observation can
be treated as a set of trees {Tk}k=1,...,nT , each of which is with
complete observation. Note that the same tree may appear many
times in {Tk}k=1,...,nT and can be merged as one tree with multi-
ple probes. For each tree with incomplete data in Ψ, we replace it
with the set of its subtrees with complete data and add these trees
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to Ψ. We then have a set of trees each of which has complete data
and the algorithms described in Sections 4 and 6.1 can be applied
to the inference of loss rate and delay distribution.

7. EM ALGORITHM FOR LOSS INFERENCE
We find convenient to work with the log-likelihood function

Linc(xR; α) =
∑
T∈Ψ

Linc
T (xR(T ); α) (15)

where
Linc

T (xR(T ); α) =
∑

xR(T )∈ΩR(T )
(nT (xR(T )) log p(xR(T ); α))

is the log-likelihood of the the measurement down the tree T ∈ Ψ.
We estimate α by the maximizer of the likelihood (15), namely
α̂ = arg maxLinc

T (xR(T ); α). We follow the approach in [7, 8]
and employ the EM algorithm to obtain an iterative approximation
to the maximizer of (15). The basic idea is that rather than perform-
ing a complicated maximization, we “augment” the observed data
with unobserved or latent data so that the resulting log-likelihood
has a simpler form. Following [8], we augment the actual obser-
vations with the unobserved observations at the interior links. In
other words, we assume complete knowledge of the loss process.
The log-likelihood for the complete data x = (xT )T∈Ψ is

L(x; α) =
∑
T∈Ψ

L(xT ; α) (16)

where L(xT ; α) = log p(xT ; α) is the log-likelihood of the com-
plete set data for T . It is easy to realize that p(x1

T , . . . , xnT
T ; α) =∏

(i,j)∈E(T ) α
nj,T

i,j α
ni,T −nj,T

i,j and that

L(x; α) =
∑

(i,j)∈E(Ψ)

(
∑

T∈Ψi,j

nj,T log αi,j (17)

+ (
∑

T∈Ψi,j

ni,T −
∑

T∈Ψi,j

nj,T ) log αi,j).

Maximization of (17) is trivial, as the stationary point conditions

∂L(x; α)

∂αi,j
= 0 (i, j) ∈ E(Ψ) (18)

immediately yield

α̂i,j =

∑
T∈Ψi,j

nj,T∑
T∈Ψi,j

ni,T
(i, j) ∈ E(Ψ). (19)

Since x and thus the counts except for leaves are not known, the EM
algorithm uses the complete log-likelihood L(x; α) to iteratively
find α̂ as follows:

1. Initialization. Select the initial link loss rate α̂(0). The simu-
lation study suggests the values that the algorithm converges
to are independent of initial values.

2. Expectation. Given the current estimate α̂(�), compute the
conditional expectation of the log-likelihood given the ob-
served data x under the probability law induced by α̂(�),

Q(α′; α̂(�)) = Eα̂(�) [L(x; α′)|xR] (20)

=
∑

(i,j)∈E(Ψ)




∑
T∈Ψi,j

n̂j,T log α′
i,j

+ (
∑

T∈Ψi,j

n̂i,T −
∑

T∈Ψi,j

n̂j,T ) log α′
i,j)




where n̂k,T = Eα̂(�) [nk,T |xR]. Q(α′; α̂(�)) has the same
expression as L(x; α′) but with the actual unobserved counts
nk,T replaced by their conditional expectations n̂k,T . To
compute n̂k,T , remember that nk,T =

∑nT
m=1 xm

k,T . Thus,
we have

n̂k,T =

nT∑
m=1

Pα̂(�) [Xk,T = 1|XR(T ) = xm
R(T )] (21)

=
∑

xR(T )∈ΩR(T )

nT (xR(T ))Pα̂(�) [Xk,T = 1|XR(T ) = xR(T )]

3. Maximization. Find the maximizer of the conditional expec-
tation α(�+1) = arg maxα′ Q(α′, α̂(�)). The maximizer is
given by (19) with the conditional expectation n̂k,T in place
of nk,T .

4. Iteration. Iterate steps 2 and 3 until some termination cri-
terion is satisfied. Set α̂ = α̂(�), where � is the terminal
number of iterations.

Complexity
The complexity of the algorithm is dominated by computation of
the conditional expectation n̂k,T . This can be accomplished in lin-
ear time with #V (T ), T ∈ Ψ. The algorithm is described in [3].

Convergence
We establish conditions for convergence of estimated parameters
and likelihood under the EM algorithm for loss inference. Observe
that the complete data log-likelihood function (17) can be written

L(x; α) =
∑
T∈Ψ

∑
i∈V (T )\{ρ(T )}

ni,T φi,T (α) (22)

where

eφi,T (α) =
αf(i,T ),i

αf(i,T ),i

∏
j∈d(i,T )

αi,j (23)

(Here the empty product when d(i, T ) = ∅ is taken as 1). Thus
the log likelihood comes from an exponential family with suffi-
cient statistics (ni,T )T∈Ψ, i∈V (T ) and parameters α. The expo-
nential family is regular, since we take α in the convex set A =
(0, 1)×T∈ΨV (T ). Note that the map α 
→ φ is invertible: eφi,T =
αf(i,T ),i/αf(i,T ),i for a receiver i in R(T ). Invertibility then fol-
lows by induction: if we know all the (αi,j)j∈d(i,T ) then we can
recover αf(i,T ),i from φi. It follows that the exponential family is
curved: the φi,T are constrained to some #V -dimensional smooth
submanifold of R

×T∈ΨV (T )\{ρ(T )} through the constraint that the
link probabilities α calculated from φT on different trees T must
agree on common links.

The following convergence results for the sequence of EM iterates
α̂(�) follow from the regular exponential family property; see The-
orem 6 in [20].

THEOREM 3. (i) Linc(xR; α̂(�)) converges to some limit L.

(ii) If {α ∈ A | Linc(xR; α) = L} is discrete, α̂(�) converges
to some α∗ that is a stationary point of Linc(xR; α).

(iii) If Ļi(xR; α) is unimodal, α̂(�) converges to the incomplete
data MLE, namely, α̂ = arg maxαLinc(xR; α)
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The theorem implies that when there are multiple stationary points,
e.g. local maxima, the EM iterates may not converge to the global
maximizer. Unfortunately, we were not able to establish whether
there is a unique stationary point or conditions under which unicity
holds.

8. SUMMARY
In this paper, we focused on inferring network internal link-level
performance from end-to-end multicast measurements taken from
a collection of trees. We addressed two questions:

• Given a collection of multicast trees, whether all of the links
(or a specified subset) are identifiable.

• If a set of links of interest are identifiable, how do we obtain
accurate estimates of their performance.

With loss rates as performance metrics, we established necessary
and sufficient conditions for identifiability; and proposed two al-
gorithms, MVWA algorithm and EM algorithm for inferring a set
of links of interests. The algorithms are evaluated through model
simulation and network simulation. The model simulation suggests
that the EM algorithm is more accurate and of less variability. In
the network simulation, we observe that EM algorithm can provide
accurate estimate to the probe traffic loss whereas over-estimate all
traffic loss slightly. Moreover, we extend the EM algorithm in-
fer link delays, and demonstrate how to use our algorithms when
only unicast measurement are available or some of the observations
made at end-hosts are missing.
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Abstract

Network tomography using multicast probes enables inference of loss characteristics of internal net-
work links from reports of end-to-end loss seen at multicast receivers. In this paper we develop estima-
tors for internal loss rates when reports are not available on some probes or from some receivers. This
problem is motivated by the use of unreliable transport control protocols, such as RTCP, to transmit loss
reports to a collector for inference. We use a maximum likelihood (ML) approach in which we apply
the Expectation Maximization (EM) algorithm to provide an approximate value for the ML estimator for
the incomplete data problem. We present a concrete implementation of the algorithm that can be applied
to measured data. For certain classes of models we establish identifiability of the probe and report loss
parameters, and convergence of the EM sequence to the MLE. Numerical results suggest that these prop-
erties hold more generally. We derive convergence rates for the EM iterates, and the estimation error of
the MLE. Last, we evaluate the accuracy and convergence rate through extensive simulations.

Keywords: End-to-end Measurement, Network Tomography, Missing Data, Maximum Likelihood Es-
timation, EM Algorithm, Multicast, RTP, RTCP.

1 Introduction

1.1 Motivation

As the Internet grows in size and diversity, its internal performance becomes ever more difficult to measure.

Any one organization has administrative access to only a small fraction of the network’s internal nodes,

whereas commercial factors often prevent organizations from sharing internal performance data.

One promising technique that avoids these problems, Multicast Inference of Network Characteristics

(MINC), uses end-to-end multicast measurements to infer link-level loss rates and delay statistics by ex-

ploiting the inherent (and well characterized) correlation in performance observed by multicast receivers.

These measurements do not rely on administrative access to internal nodes since the inference can be calcu-

lated using only information recorded at the end hosts.

The key intuition for inferring packet loss is that the arrival of a packet at a given internal node can

be directly inferred from the packet’s arrival at one or more receivers reached from the source by paths

through that node; if it reaches the receivers, it must have reached the node. Conditioning on arrival at

�This work was supported in part by DARPA and the AFL under agreement F30602-98-2-0238
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a descendent, we can determine the probability of successful transmission to and beyond the given node.

Efficient inference algorithms are given in [2] for loss, [15] for delay distributions, [9] for delay variances,

and [3] for inferring the logical multicast tree topology itself. Extensions of these ideas to unicast (where

multicast is replaced by a packet pair [5] or a packet stripe [10]) have also been proposed.

All of the algorithms based on the MINC methodology rely on the availability of complete information

from the receivers. This poses a serious problem in their deployment. For example, one promising avenue of

deployment is through the extension of RTCP, the RTP [20] control protocol, to provide extended loss reports

[11]. By piggybacking MINC loss reports on a standard transport protocol, one can effectively co-opt regular

applications and their traffic to form a lightweight impromptu measurement infrastructure that encompasses

many host end-points. However, loss reports are typically transmitted unreliably. Furthermore, the RTP

standard imposes a constraint on the bandwidth that can be used by RTCP packets. Thus, this deployment

will result in the availability of only incomplete data sets for the purpose of network inference. The need

to analyze incomplete data sets also arises in the extension of the MINC techniques to unicast as they rely

on collecting data from subsets of receivers. Thus there is a need to modify the inferencing techniques to

be able to handle incomplete data sets. Using loss as an example, the goal of this paper is to extend the

techniques developed in [2] to handle incomplete data.

1.2 Contribution

In this paper we adapt the multicast inference techniques proposed in [2] to perform inference of internal

network characteristics when data is missing from some of the receivers. The data for the inference com-

prises measured end-to-end loss of multicast probes sent from a source to a number of destinations but

where only a subset of the destinations report their observations for each multicast probe. This is used to

infer the loss characteristics of each logical link of the tree joining the source to the destinations, i.e., of the

composite paths between its branch points.

A simple approach to manage the impact of missing data would be to restrict inference to subsets of

probes and receivers for which complete data is available, then patch together such estimators to draw

inference on the complete tree. There are three drawbacks with this approach: (i) unless the coverage is

sufficiently rich, it is not possible to infer transmission probabilities for all links; (ii) unless the missing data

distribution obeys certain conditions–known as Missing Completely at Random (MCAR)–such estimators

are not consistent in that they remain biased even in the limit of infinitely many probes; and (iii) even under

MCAR such estimators are not generally efficient, i.e., there can exist estimators with smaller variance.

For these reasons we follow a more direct approach. We extend the Maximum Likelihood (ML) for-

mulation of [2] to include the occurrence of missing data. The link loss probabilities are then estimated

by the Maximum Likelihood Estimator (MLE) arising from the corresponding likelihood function. In con-

trast to the results in [2], it is not generally possible to determine the MLE by simple root finding when

data is missing. Instead, we use the Expectation Maximization (EM) algorithm [7] to generate an approx-

imating sequence to the corresponding MLE. We now outline the remainder of the paper and the detailed

contributions.

In Section 2 we set up models for the multicast tree, probe propagation, and report loss, and review some
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results for loss inference from complete data from [2]. We describe the model frameworks for missing data

and give two examples: inference using unicast stripes [10], and inference using extended RTCP reports,

as proposed in [1]. In Section 3 we set up the incomplete data likelihood function, and describe the EM

algorithm and its application to the present model. We establish conditions required for convergence of the

EM iterates to the MLE. We translate these into conditions on the measured data. If these conditions are

not fulfilled, it is possible to pass instead to one or more related inference problems on subtrees for which

the conditions are fulfilled. In Section 4 we tailor the EM algorithm to our specific problem and present an

algorithm for use on measured data. Section 5 addresses conditions for identifiability of model parameters

and relates these to topological properties of families of subtrees on which complete measurements can be

made. Convergence of the MLE as the number of probes grows is investigated in Section 6; in particular we

obtain explicit expressions for the asymptotic variance of the MLE for a class of simple models. A related

expression for the convergence rate of the EM iterates is obtained in Section 7. The algorithm from Section 4

is evaluated in model-based simulation and using experimentally derived traces in Section 8. We conclude

in Section 9. Details of most proofs are deferred to Section 10.

1.3 Related work

Several tools and methodologies exist for characterizing link-level behavior from end-to-end multicast mea-

surements. However, most of these require complete data from all of the receivers in the multicast tree.

These include the MINC methodologies for losses, [2], and for delay, [15, 9] and topology characteristics,

[3]. These methodologies have been adapted to unicast through the transmission of packet pairs [5] or

stripes [10] to pairs of receivers within a distribution tree. The data then consists of observations from pairs

of receivers and can be interpreted as observations in which the data is missing from all but these pairs of

receivers. The methodology presented in [10] treats the problem as separate problems corresponding to each

pair of receivers and produces link estimates by averaging over all of the estimates produced from each of

these receiver pair problems.

In [5], the authors introduce an additional link parameter, namely the conditional probability that the

second packet within a pair is not lost given that the first packet is not lost. The authors then treat the

outcomes of the each of the packets in a pair within the tree as unobserved data and use the EM algorithm

to infer the link probabilities and conditional link probabilities. Due to the complexity of this task, they

propose a heuristic for inferring these parameters. Because we rely on multicast, our task is simplified as

we only have one set of link parameters to infer. Our solution methodology uses the EM algorithm to obtain

a solution to the likelihood equation. Coates and Nowak have extended their EM-based, unicast-based

techniques to infer delay statistics in [6].

Last, there exist several approaches that infer round trip link behavior. These include pathchar [8, 12]

and the linear algebraic approach of [21]. The former infers loss, delay, and available link bandwidth

whereas the latter infers round trip link delays. The former requires considerable time to converge. Both

lose accuracy with asymmetric round trip paths.
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2 Models for Probe and Report Transmission

2.1 Tree model

Let T � �V�L� denote a logical multicast tree with nodes V and links L. We identify one node, the root

�, with the source of probes, and set of leaves R � V with the set of receivers. We assume that the root

has single child, denoted by �. If not, then we can treat separately the trees descended through each child of

�, each one having this property. Each node k, apart from the root �, has a parent f�k� such that �f�k�� k�

is a link in L. We will sometimes refer to the link �f�k�� k� that terminates at k simply as link k. Define

recursively the ancestors of k by fn�k� � f�fn���k�� with f��k� � k. We say j is descended from k, and

write j � k, if k � fn�j� for some n � N . The set of children of k, namely fj � V � f�j� � kg is denoted

by d�k�. T �k� � �V �k�� L�k�� will denote the subtree rooted at k; R�k� � R � V �k� is the set of receivers

in T �k�. Define U � V n f�g.

2.2 Packet loss model

We assume a Bernoulli loss model in which probes are independent and each probe is successfully trans-

mitted across link k with probability �k. Thus the progress of each probe down the tree is described by an

independent copy of a stochastic process X � �Xk�k�V as follows. X� � �. Xk � � if the probe reaches

node k � V and � otherwise. If Xk � �, then Xj � ���j � k. Otherwise, P �Xj � �jXf�j� � �� � �j and

P �Xj � �jXf�j� � �� � �� �j . We adopt the convention �� � � and denote � � ��i�i�V . P� will denote

the distribution of X .

2.3 Inference of link loss from complete data

When a probe is sent down the tree from the root �, we cannot observe the whole process X . We assume

that, at most, we know only the outcome �Xk�k�R � � � f�� �gR that indicates whether or not the probe

reached each receiver. When the entire outcome for a probe is known (i.e. Xk for all receivers k), we

shall say that we have complete data from that probe. In [2] it was shown how the link probabilities can be

determined from the the distribution of (complete) outcomes. We briefly review this.

Consider an experiment in which n probes are dispatched from the root �. Each probe i � �� � � � � n

gives rise to an independent realization X�i� of the probe process X . We call

Xcplt � �X
�i�
k �i�������n

k�R (1)

the complete data for the experiment. For each outcome x � �, let n�x� denote the number of probes

i � �� � � � n for which X
�i�
k � xk for all k � R. Let

p��x� � P��Xk � xk� �k � R� (2)

denote the probability of an outcome x � �. The complete data log-likelihood to obtain the data Xcplt �

�X���� � � � � X�n�� can be written in terms of the n�x� as

Lc��� � logP��Xcplt� �
X

x��

n�x� log p��x�� (3)
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We characterize the Maximum Likelihood Estimator (MLE) of �, namely, arg max�L���, as follows.

For k � V , let Ak be the probability that the probe reaches k. Thus Ak �
Q

j�k �k, the product of the

probabilities of successful transmission on each link between k and the root �. For each k � U set

�k � E���j�R�k�Xj � (4)

i.e., �k is the probability that a probe reaches at least one receiver descended from node k. Denote by b�k the

corresponding empirical quantity, i.e., the proportion of the n probes that reach at least one leaf descended

from k:

b�k � n��
nX
i��

�j�R�k�X�i�
j � (5)

In what follows we consider � to lie in the open parameter set A � f� j �k � ��� ��� k � Ug. Some of the

results of the following theorem also hold on subsets of the boundary of A.

Theorem 1 ([2]) Assume � � A.

(i) For each k � U ,

��� �k�Ak� �
Y

j�d�k�

��� �j�Ak�� (6)

with the convention that an empty product occurs when k � R is zero.

(ii) Let G � f��k�k�U � �k � ��k� �k �
P

j�d�k� �j �k � U n Rg. For each � � G and k � U , (6) has

a unique solution Hk��� in the interval ��k� ��.

(iii) When b� � G, the likelihood equation,

�Lc
��k

��� � �� k � U (7)

has as a unique solution

b�k � Kk�b�� �� Hk�b���Hf�k��b��� k � U� (8)

(iv) With probability one, for sufficiently large n, both b� and the MLE of � lie in A, and are hence equal.

(v) The parameters � are identifiable, i.e., P� � P�� for �� �� � A implies � � ��.

It turns out that Theorem 1(iv) is weaker than required for the present paper. We now establish a stronger

version that provides a test as to whether or not b�k is the MLE for finite n.

Theorem 2 Assume b� � G. If b� � A, then it is the MLE for �.

Remark: Theorem 1(iv) establishes that for n sufficiently large, the MLE lies in A and hence must be b�,

the solution of the likelihood equation. Theorem 2 is more useful from the computational point of view; it

says that provided b� lies in A, a condition that can be checked by inspection, it is the MLE, regardless of n.

As a consequence of the MLE property, b� is consistent (b� n���� � with probability 1), and asymptoti-

cally normal (
p
n�b�� �� converges in distribution to a multivariate Gaussian random variable as n��);

see e.g. [19].
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2.4 Missing data model

We now want to generalize the problem by admitting the possibility that some outcomes may not be com-

pletely known because the receiver variables are missing. Let T � �T
�i�
k ��i�������n

k�R denote the n��R matrix

of missing data indicators, with T
�i�
k taking the value � if the variable X

�i�
k is missing, and T

�i�
k � � if it is

present. The set of observed data and missing data are thus, respectively,

Xobs � fX
�i�
k j T

�i�
k � �g and Xmis � fX

�i�
k j T

�i�
k � �g� (9)

In this paper we assume that the missing data mechanism is ignorable in a sense we now describe;

see [14] for further details. We treat T as a random variable whose distribution is parameterized by some

quantity �. P� will denote the distribution of T under �, and P��� the joint distribution of Xcplt and T .

We henceforth assume that the missing data is missing at random (MAR). This is the property that the

distribution of the missing-data mechanism T does not depend on the missing values Xmis. More formally,

we can write the MAR property as P��T j Xobs� Xmis� � P��T j Xobs�. As a consequence of MAR it can be

shown that the joint distribution of the observed data and the missing-data mechanism enjoys the following

factorization property:

P����Xobs� T � � P��T j Xobs�P��Xobs�� (10)

Assuming the parameters ��� �� to be distinct with product parameter space A � �, (10) says that the

missing data mechanism is ignorable in that likelihood-based inference for � based on the joint likelihood

P����Xobs� T � are the same as those based upon P��Xobs�. Thus for purposes of inferring �, we may ignore

the parameters � of the missing data mechanism. A special case of MAR is data missing completely at

random (MCAR). With MCAR the missingness probabilities do not depend on any data: P��T j Xobs� �

P��T �.

2.5 Examples

We describe two applications where data is missing and place them into the framework described above.

Inference using unicast data. In [10], the authors describe an approach to unicast based inference in

which n sets of packets, known as stripes, are transmitted by a source to all receiver pairs. The motivation

is that within each stripe, packets are transmitted back-to-back, and so their loss behavior on common links

should be highly correlated. With perfect correlations (i.e. both packets being either transmitted or lost on

a common link) the stripe has the same behavior as a notional multicast packet that follows the same route

and is subject to the same loss.

We can put each receiver pair in correspondence with a missing data indicator as follows. T�i� �

�T
�i�
k �k�R identifies the pair of receivers corresponding to the i-th stripe, i.e., T�i�j � T

�i�
k � �, T �i�

l � �,

l � R� l �� j� k if the pair of receivers is j� k � R, j �� k. Thus missingness of data from probe i at receiver

� occurs because � is not a member of the pair of receiver nodes selected for the probe.

68



If the receiver pairs are chosen independently from stripe to stripe using the same distribution, then

T � �T �i��ni�� is a sequence of IID random variables. Thus T has the following distribution,

P�T � t� �
nY

i��

P�T �i� � t�i��� �t � f�� �g�R (11)

where

P�T �i� � t� �
X

j�k�R�j ��k

�ftj � �g�ftk � �g
Y

l�Rnfj�kg

�ftl � �gpj�k� �t � f�� �g�R

Here pj�k is the probability that the pair of receivers j and k is chosen. If we further assume that T is

independent of X , then the data is MCAR.

Another variation has the sender cycle through the pairs in a round robin fashion. Let � � R� n f�j� j� �

j � Rg � f�� � � � �mg be a one-to-one mapping where ��j� k� is the position in the round robin schedule

where a probe is sent to receiver pair j and kand m � �R � ��R � ��. The joint probability distribution

for T is given by (11) with

P�T �mi�d� � t� �
X

j�k�R�j ��k

�f��j� k� � dg�ftj � �g�ftk � �g
Y

l�Rnfj�kg

�ftl � �g� (12)

for all t � f�� �g�R� i � �� � � d � m.

Inference using RTP/RTCP. The Reliable Transport Protocol (RTP) [20] is a protocol for the transfer

of data from a single sender to one or more receivers. Associated with it is a control protocol RTCP that

allows receivers to broadcast loss behavior to each other and to a third party. Typically, the observations

are batched and each batch is broadcast as a single report. The third party can collect the observations

and apply inference methodologies to them. However, these reports are typically not transmitted reliably.

Consequently, the data collector must deal with missing information.

In the current implementation of RTCP, receivers broadcast only average loss rates. Extensions to the

protocol, proposed in [1], enable receivers to report on the reception of individual packets. However, due

to the constraints imposed on reporting volumes by RTCP, it may not be possible to report on every packet.

The omission of certain reports to fulfill this constraint is thus an additional source of missingness.

We propose a simple model for this scenario. Consider receiver j � R that collects loss observations

and sends them to a data collector. Let ffAi�jg�i��gj�R be a set of random variables where Ai�j is the

number of observations placed in the i-th report by the j-th receiver. Let ffC�k�j g�k��gj�R be indicator

random variables that represent the outcome of the transmission of the k-th loss report by receiver j to the

data collector; it is received by the collector if C�k�j � � and lost otherwise. Define ��i� j� � minfl �
Pl��

k��Ak�j � i �
Pl

k��Ak�jg, i.e., ��i� j� identifies which report the i-th observation from receiver j is

placed in. Let ffS�i�j g�i��gj�R be a set of indicator random variables that represent whether probe i was

actually selected for reporting from receiver j; it is selected if S�i�j � �. Then the missing data indicator

T
�i�
j , i � �� � � � � n, j � R can be expressed as T�i�j � S

�i�
j C

���i�j��
j .
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Under strong simplifying assumptions, namely that the random variables A�S and C are independent of

X , the model is MCAR. However we can posit a situation in which independence may not hold in practice.

Suppose the collector lies at a node k in the multicast tree. Then the path for reports from receivers in

R n R�k� to k intersects with the paths of probe packets from � to receivers in R�k�. Thus we may expect

the missingness variables fT�i�
j � j � R n R�k�g to be correlated with the receiver state fXj � j � R�k�g.

This is precisely the type of model allowed when data is MAR.

2.6 Approaches to the problem of missing data

It is tempting to reduce the problem of inference with missing data to a composite of known inferences by

performing inference using subsets of probes for which reports reached leaf descendents of a given node.

A simple approach to manage the impact of missing data is to restrict inference to subsets of probes and

receivers for which complete data is available, then patch together such estimators to draw inference on the

complete tree. A minimal way to do this would be to use only probes for which reports were received from

all receivers. A more sophisticated approach is the following:

(a) For each k � R, estimate bAk � b�k by the fraction of observed reports indicating probe reception.

(b) For each k � U nR let Rk denote the set of subsets of R�k� in which each member is the descendant

of a different child of k. For each r � Rk, use only probes with reports received from all j � r to

form the fractions b�k�r� and fb�j�r�gj�r. Estimate bAk � �
P

r�Rk
Hk�b��r����Rk , i.e., averaging

over the r � Rk.

(c) Estimate link transmission probabilities b�k � bAk� bAf�k�.

However, such “patchwork” approaches have three pitfalls:

(i) Unless the coverage is sufficiently rich, it is not possible to infer transmission probabilities for all

links. If not all nodes are branch points of some “complete data” subtree, it follows from one of our

later results that one cannot infer the transmission probability for the link that terminates at that node.

In the minimal case, there may be no probes for which reports are received from all probes.

(ii) Such estimators are not consistent unless data is MCAR; we illustrate with an example in Section 3.1.

Furthermore, checking whether a given data set is consistent with the MCAR property may be a

complex task since the number of consistency conditions that would have to be checked grows expo-

nentially with the number of leaves in the tree.

(iii) Even under MCAR such estimators are not generally efficient, i.e., there can exist estimators with

smaller variance.

For these reasons we instead extend the previous ML approach to cover the missing data case directly:

under general conditions ML-estimators are consistent and efficient. This is the subject of the next section.
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3 Estimation of Link Loss Rates with Incomplete Data

In this section we present the likelihood function L for the incomplete data. Determination of the cor-

responding ML estimator for the link probabilities turns out to be significantly more complex that in the

complete data case. We turn to a standard iterative method, the EM algorithm, to derive an approximating

sequence to the incomplete data MLE.

3.1 Description of incomplete data and the likelihood function

The corresponding incomplete data likelihood function is the marginal distribution function of the observed

data; formally we write this as
R
P��Xobs�Xmis�dXmis. We now obtain an explicit expression. In order

to represent both missing and observed data in a compact form, we extend the set of outcomes to the set

�� � f�� �� ugR , where u is used to denote that a given receiver datum is missing. u� � �u� � � � � u� � ��

will denote the outcome in which data is missing from all receivers. Let t � f�� �gR denote the generic

vector of missing data indicator variables. With each such t and x � � we then associate an element x�t� of

�� through

xk�t� �

�
u if tk � �
xk otherwise

� k � R� (13)

An inverse of the above map associates with x� � �� its missing data indicator t�x�� by

tk�x
�� �

�
� if x�k � u

� otherwise
� k � R� (14)

The set of complete outcomes x that can give rise to an incomplete outcome x� is the set

��x�� � fx � � j x�k � xk � tk�x
�� � �g� and conversely ���x� � fx� � �� j x � ��x��g (15)

is the set of complete outcomes x� that can be obtained from a complete outcome x. The equivalent condi-

tions x � ��x�� and x� � ���x� can be rewritten as x�t�x��� � x�.

The probability to record an incomplete outcome X�i��T �i�� � x� is denoted

q����x
�� � P����X

�i��T �i�� � x��� (16)

Now fX�i��T �i�� � x�g � fX�i� � ��x��g � fT �i� � t�x��g. Using the MAR property (10) we factorize

q����x
�� � p���x

����x�� (17)

where

p���x
�� � P��X

�i� � ��x��� �
X

x���x��

p��x� and ��x�� � P��T
�i� � t�x�� j X�i� � ��x���� (18)

Without loss of generality we have taken the missingness probabilities themselves as parameters �. Note that

by the MAR property, for any x � ��x��, P��T
�i� � t�x�� j X�i� � ��x��� � P��T

�i� � t�x�� j X�i� � x�.

Since ft�x�� j x� � ���x�g � f�� �gR , the conditional probabilities � satisfy
X

x�����x�

��x�� � �� �x � �� (19)
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Now let m�x�� denote the number of probes i � �� � � � � n for which X�i��T �i�� � x�. Due to the

factorization property (10), the log-likelihood function log
Qn

i�� q����X
�i��T �i��� can be written as a sum of

L��� �
X

x����

m�x�� log p���x
��� (20)

with a term that is independent of �. Thus, for the purposes of obtaining an ML estimate of �, we need only

consider L���. We refer to L as the incomplete data likelihood function. Note that the term in m�u�� makes

no contribution to L since ��u�� � � and hence p���u
�� � �. Hence the sum in (20) can be restricted to

��

� � �� n fu�g.

Example: 2 leaf tree with MAR data. We now give an example to show how the complete data MLE,

applied to those probes for which complete data is available, generally produces an inconsistent estimate of

the link probabilities in the MAR case. Consider a two leaf tree where data is MAR from the right leaf; the

probability of missingness thus depends on the data observed at the left leaf. The leaf probabilities obey:

q���� � ������������ q���� � ������������ q���� � ������������ (21)

q���� � ��� � ������������� q��u� � �������u�� q��u� � ��� ��������u� (22)

Using the four instances of (19), namely,

x � �� � ����� � ���u� � �� x � �� � ����� � ���u� � �� (23)

x � �� � ����� � ���u� � �� x � �� � ����� � ���u� � �� (24)

(21) reduces to

q���� � ������������ q���� � ������������ q���� � ������������ (25)

q���� � ��� � ������������� q��u� � ���������� q��u� � ��� ���������� (26)

Now, the complete data MLE based on the corresponding complete data empirical probabilities

bq����� bq����� bq����� bq���� is

b�� � �bq���� � bq������bq���� � bq�����
bq�����bq���� � bq���� � bq���� � bq����� � b�� � bq����

bq���� � bq���� � b�� � bq����
bq���� � bq���� (27)

In the MCAR case, all ��x�� appearing in (25) would be equal, and substituting q for bq in (27) one recovers

��� ��� ��: the estimator is consistent. But in the general MAR case one obtains only

���������� � ��������

��������� � ��� ����������
�� ���

�������

������� � �������
�� ��� ��� (28)

i.e. only estimation of �� is consistent.
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3.2 Application of the EM algorithm

We can in principle estimate the link probabilities � by the incomplete data MLE �� � arg max�L��� in

(20) calculated from the counts of incomplete outcomesm � fm�x�� � x� � ��

�g. However, we have been

unable to obtain a direct solution to the incomplete-data likelihood equation. Instead, we employ a standard

statistical method,the Expectation-Maximization (EM) algorithm [7], to obtain an iterative approximation

b����� � � �� �� � � � to a stationary value of the incomplete data likelihood. The algorithm comprises the

following steps:

(i) Initialization. Pick some initial link probabilities ����. This could be done, e.g., by setting b���� � b�,

the complete data MLE determined from the counts of complete outcomes m if these are non-zero.

When complete data is not available, we can use the fact (see the proof of Theorem 5 in [2]) that �k �

Ak�O�k�k�� to approximate �k � Ak�Af�k� � �k��f�k� � ����k������f�k�� � ���k��f�k�.

This suggests the initial value

b�
���
k � � � b�k � b�f�k�� (29)

(ii) Expectation. For each b���� find the conditional expectation of the complete log-likelihood given the

incomplete data Q���� b����� � E
b���� 	Lc��

�� jm
.

(iii) Maximization. Find the maximizer of the condition expectation: b������ � arg max��Q���� b�����

(iv) Iteration. Iterate steps (ii) and (iii) until some termination criterion is satisfied.

For k � V , define the conditional probabilities for a probe to reach R�k� as

b�k�� � E�	�j�R�k�Xk jm
� (30)

For notational convenience we write the conditional probability b�k�b���� derived from the iterate b���� as b����k .

Theorem 3 Assume b���� � G. Then

�
�����
k � Kk�b�

����� k � U (31)

provided that K�b����� lies in A.

We now investigate the question of convergence of the iterates b����. Whereas the complete data like-

lihood function can be shown to derive from a standard exponential family (see the proof of Theorem 2),

the incomplete data likelihood function derives only from a curved exponential family. Thus we cannot use

results based on standard exponential families (see e.g. [22]) alone to conclude convergence of b���� to ��. We

now establish conditions under which the sequence exists in A and converges to the MLE for the incomplete

data problem.

Theorem 4 Assume b���� � G and K�b����� � A for all �.

(i) L�b����� converges to some limit L.
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(ii) If f� � A j L��� � Lg is discrete, b���� converges to some �� that is a stationary point L, i.e.
�L
��

���� � �.

(iii) If L is unimodal, b���� converges to the incomplete data MLE ��.

3.3 Calculation of the EM iterates

An algorithm for the calculating Kk��� for a given � � G has been detailed in [2]. It remains then to provide

an algorithm for the calculation of the b��. Let n� � n�m��u�� denote the number of probes for which the

data is not entirely missing. Observe that

b�k�� �
X

x����

�

m�x��

n�
b�k���x�� (32)

where

b�k���x�� � E���j�R�k�XkjX
� � x��� (33)

Let R�k� x�� � fj � R�k� j tj�x
�� � �g denote the receivers descended from k from which data is

observable. Let h�k� x�� denote the closest ancestor h of k for which a packet has been observed to reach at

least one descendant leaf, i.e.,

h�k� x�� � inf
j�k

fj � y�j � �g� (34)

where y�k � ��
j�R�k�x

�
j . When k � j, let d�j� k� denote that child of j that is an ancestor (or possibly equal

to) k, i.e., d�j� k� � fi � d�j� � i � kg.

Theorem 5 When y�k � �, b�k���x�� � �. When y�k � �,

b�k���x�� �
ck � bk

cd�h�k�

Y
k�i�d�k�h�

��
��i

Y
j�d�i�nd�i�k�

cj

��
� (35)

where h � h�k� x��, and for k � i � h,

bk � P���j�R�k�Xj � � j Xf�k� � ��� ck �

��
�

�� if R�k� x�� � �
P���j�R�k�x��Xj � � j Xf�k� � ��

otherwise
� (36)

Remark: it was found in [2] that the problem of determining the � for a tree with complete data factors into

the problem of solving a set of depth two tree inference problems, one for each node k � V n R. For each

leaf k one constructs the logical tree with root � having single child k, and d�k� leaf-children. Furthermore,

for a general tree, the problem could be mapped onto that for a binary tree by the insertion of lossless links.

However, this method cannot be applied when there is missing data. This is because the form (35) for b����k��

includes variables from receivers other than those descended from k.
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3.4 Topology and data conditions

Theorems 3 and 4 required the iterators b���� to lie in the domain G. In this section we specify conditions

on the data in order for these requirements to hold. In some cases where the conditions do not hold, it is

possible adjust the problem by passing to one or more subtrees of the original tree, for which the conditions

do hold. The requirements for Theorems 3 and 4 are then fulfilled: see Lemma 1 below. The conditions

describes here are similar to those applied in the case of complete data in [2].

Non-identifiable subtrees. Order the elements of the set f�� �� ug as u � � � � and extend the usual

maximum operator � on f�� �g to an operation �� on f�� �� ug, respecting the order in an obvious manner.

For a given realization �X�T � of the single probe and missing data process, define the quantities

Y �

k � ��

j�R�k�Xj�T � (37)

i.e., the extended maximum of Xj�T � over all receivers j descended from k. Y�

k takes the value u if all data

from R�k� on a given probe is missing, � if a probe was observed to reach at least one receiver in R�k�, and

� otherwise. We first eliminate from consideration subtrees on which no data is missing but whose leaves

were reached by no probes. For k � V , let Dk denote the event that for some probe i, X�i�
j �T �i�� �� � for

some j � R�k�. We will assume

Dk occurs for all k � V (38)

If (38) does not hold, the following procedure reduces the inference problem to one for which it does. If Dk
fails, we remove from further consideration the subtree T �k� rooted at k. If this pruning leaves the parent

f�k� with only one offspring j, the remaining tree is no longer a logical multicast tree. To make it so we

remove the link �f�k�� j� and identify the nodes j and f�k�. The consequence is that we will only able to

identify the characteristics of the composite link joining j to f��j� of the original tree. Performing these

operations for all k at which Dk fails, we obtain a tree for which (38) holds.

In general, it is not possible to attribute a transmission probability, even of zero, to individual links in

T �k�, since we cannot distinguish the link or links with zero transmission rate. An exception to this is when

Dk fails for a leaf node k, but Df�k� holds at the parent node f�k�. In this case we may estimate b�k � �.

Except in this case, we flag all f�j � j � kg as unknown.

Links with perfect transmission. Let D�

k denote the complement of the event fX�i�
j �T �i�� � ���j �

R�k�� i � �� � � � � ng. When D�

k fails, lossless transmission is reported for all probes to all receivers in R�k�.

The effect is to position K�b��� on the boundary of A, since it follows that Kj�b��� � � for all j � R�k�.

Although this is not a problem for computation, it takes us out of the domain of application of Theorems 2,

3 and 4. The formal application of these results requires that

D�

k holds for all k � V . (39)

If (39) does not hold, the following procedure reduces the inference problem to a set of one or more for

which it does. When D�

k fails, we set b�j � � for all nodes j � V �k�, and omit these nodes from further
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consideration. We then spawn a set of separate inference problems by forming the set of subtrees not

containing k that are rooted at ancestors of k. This is the set of trees fT �j� �� j j � k� � � d�j�� � �� kg,

where T �j� �� has vertices fjg � V ��� and links f�j� ��g � L���.

Model Conformance. We also need a condition to ensure that estimated quantities b� lie in G. Let D��

k

be the event that k has children j� � � d�k� such that X�i�
j �T �i�� � � and X

�i�
� �T �i�� �� �. Without this

condition, probe losses on different subtrees descended from k, conditional on the probe having reached k,

are correlated. This is because each probe is observed on no more than one such subtree. Henceforth we

assume

D��

k holds for all any k � V n R. (40)

If D��

k fails, we adjust the tree by removing the link �f�k�� k� from the tree and identifying its endpoints

k and f�k�. In the original tree, we will only be able to identify the characteristics of the composite links

joining f�k� to the children d�k�. The procedure is iterated if necessary until (40) holds.

Conditions (38) and (40) enable us to fulfill some assumptions in Theorems 3 and 4. We will henceforth

assume that they hold.

Lemma 1 When (38) and (40) hold, b�� � G for any � � A.

3.5 Example: the two-receiver tree

In the simplest case we can establish unimodality of Lc directly, and thus conclude convergence of the EM

iterates to the incomplete data MLE. Consider the two receiver tree with root � having a single child �

whose children are the leaf nodes � and �. In the two receiver tree, we enumerate � � f��� ��� ��� ��g and

��

� � f��� ��� ��� ��� �u� u�� �u� u�g. It is not difficult to determine that the b�k���x
�� are as given by the

following table:
x�

b�����x
�� b�����x

�� b�����x
��

�� � � �

�� � � �

�� � � �

�� � � �
�u � � ��

u� � �� �

�u ������
�������

� ������
�������

u� ������
�������

������
�������

�

These yield

n�b���� � m���� �m���� �m��u� �m�u���� �m�u��
������

�� � ����

n�b���� � m���� �m���� �m�u�� �m��u��� �m��u�
������

�� � ����

n��b���� � b���� � b����� � m���� �m��u��� �m�u����

The EM iterates �K��b����K��b����K��b���� of ���� ��� ��� are then

K��b��� �
b����b����

b���� 	 b���� � b����
� K��b��� �

b���� 	 b���� � b����

b����
� K��b��� �

b���� 	 b���� � b����

b����
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Theorem 6 In the two-receiver tree, the incomplete data likelihood function L is unimodal, and hence b����

converges to the incomplete data MLE provided that K�b����� � A for all �.

4 Network Inference Algorithm

In order to carry out inference on measured data, we express the calculation of b� in Theorem 5 as an

algorithm. We start by constructing bk� ck and y�k recursively. Clearly the bk satisfy

bk �

�
�k� k � R�

�k � �k

Q
j�d�k� bj � k � U n R

(41)

The ck satisfy a similar recursion:

ck �

��
�

�� k � R� x�k � u

�k� k � R� x�k �� u

�k � �k

Q
j�d�k� cj � k � U nR

(42)

The y�k satisfy the recursion

y�k �

�
x�k� k � R

��
j�d�k�y

�
j � k � V n R

(43)

We formally specify an algorithm for the calculation of the b�k�� in Figure 1. The main procedure

comprises two phases. In the first phase, set ybc, calculates the y�k, bk and ck passing up the tree from the

leaves. The second phase, set g, then calculates the b�k�� traversing the tree from the root � downwards.

hk plays the role of d�k� h� while e plays the role of �i
Q

j�d�i�nfd�i�k�g cj . On a given path down the tree,

�ag � � until a node k with y�k � � is first encountered. �ag � � on all calls to set g below k. The

identity of the node h�i� x�� is then maintained in calls at nodes i below the child j of k (lines 10–13).

We note there is some redundancy in the algorithms, which can be avoided in implementations. bk and

ck need not be calculated at nodes k for which y�k � �, since these values are not used. The ck depend

only on the missing data indicator t�x��, and so need be calculated once for each set incomplete outcomes

fx� � �� � t�x�� � tg having the same missing data indicator t. The bk do not depend on x�, and so may be

calculated once in advance; in particular bk � ck when x� has no missing data, i.e., when x�k �� u �k � R.

Lastly, the y�k need only be calculated once for each probe with distinct x�, and once at the start of the

sequence of iterations.

5 Identifiability and Missing Data

We address the question of identifiability, i.e., whether there exists a unique set of model parameters giving

rise to a given distribution of observable data. The multicast inference method exploits correlations between

end-to-end measurements on intersection paths. Conversely, we expect that if the sets of receivers on which

data from a given probe is observable are insufficiently rich, it will not be possible to infer the loss rates on

all links. We give below a simple example that demonstrates this. In this section we shall derive conditions–

between the topology and the subsets at which data is observable–that must be satisfied in order that the

model parameters can be identified.
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1. procedure main�T � �� x��
2. set ybc�T � �� x�� ��;
3. set g�T � �� �� �� �� ��;
4. return�fgk � k � V g�;

1. procedure set ybc�T � �� x�� k�
2. if�d�k� �� �� then f
3. y�k �� x�k �
4. bk �� �k�
5. if�x�k �� u� then fck �� �� g
6. elsefck �� �k� g
7. g
8. elsef
9. foreach�j � d�k� f
10. �y�j � bj � cj� �� set ybc�T � �� x�� j�;
11. g
12. y�k �� ��jy

�
j ;

13. bk �� �k � �k

Q
j�d�k� bj ;

14. ck �� �k � �k

Q
j�d�k� cj ;

15. g
16. return�y�k� bk� ck�;

1. procedure set g�T � �� e� k� h� �ag�
2.
3. if�y�k �� �� then f
4. gk �� �;
5. foreach�j � d�k��f
6. set g�T � �� �� j� �� ��;
7. g
8. g
9.
10. elsef
11. if��ag �� �� then fhk �� k� g
12. elsefhk �� h� g
13. g
14. gk �� e�ck � bk��chk ;
15. foreach�j � d�k��f
16. set g�T � �� e�k

Q
i�d�k�nfjg ci� j� hk� ��;

17. g
18. g

Figure 1: Algorithms for determining b�k���x
��, as returned from the procedure main.
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Consider a parameterized family of distribution fP� � � � �g with vector parameter �, and let F be

some function on �. We say that P� identifies F ��� when P� � P�� implies F ��� � F ����. Here, F will

be the identity, or some other projection of components of �. In an MAR model, P��� identifies ��� �� iff

q����x
�� � q������x����x� � �� � ��� �� � ���� ���� (44)

A simple example of MCAR data that is not identifiable is a two leaf tree in which, for each probe indepen-

dently, data is missing from exactly one leaf. Then the only non-trivial equations (17) become

q�����u� � �������u�� q�����u� � ��� ��������u� (45)

q����u�� � ������u��� q����u�� � ��� �������u��

The RHS of these equations are invariant w.r.t. the transformations �� �� k��, �� �� ���k, �� �� ���k.

With each S � R we associate the minimal logical multicast tree TS � �VS � LS� that spans the root �

and S. This is obtained by first finding the minimum spanning tree of � and S in T . The branch points in

the spanning tree, together with � and S, form the node set VS . To define LS , the parent fS�k� in TS , of

each node in US �� VS n f�g, is the �-minimal j in VS such that j � k in T . A path in T that connects

two nodes in VS is called an S-segment. KS�i� � fj � V � i � j 	 fS�i�g is the S-segment terminating

at i � US . Given i � V , �S�i� denote the node in VS that terminates the S-segment containing i, i.e,. that

for which i � KS��S�i��. Likewise, �S�i� �
Q

j�KS�i�
�j denotes the composite transmission probability

along the segment KS�i�. �S � f�S�i� � i � USg will denote the collection of such probabilities.

Let DS be the �US 
�U incidence matrix of the nodes of U in the segments of TS , i.e., DS�jk � � if

k � KS�j� and � otherwise. Setting �S�k� � log�S�k� and xk � log�k we have that

�S � DSx (46)

for any S � R. Before stating and proving results on identifiability, we note that there exists at least one

solution, log�, to (46). Let P����S denote the distribution of the reports from nodes in S. We give two

conditions for identifiability of �.

Theorem 7 Let T be a canonical loss tree and fSigmi�� a collection of subsets of R.

(i) U � �ni��USi if and only if the equations f�Si � DSixg
m
i�� have a unique solution x.

(ii) Assume P����Si identifies �Si for each i. Then fP����Sig
m
i�� identifies � iff either (and hence both) of

the conditions of part (i) are satisfied.

Remarks. Uniqueness of the solution to (46) is determined by the structure of the DS , which depend only

on the topology and the choice of the S, not on �S . Consequently, when uniqueness holds, it does so for

any additive metric. Thus one can devise a test for identifiability based on path length in terms of number of

links. Furthermore, if � is not identifiable, the procedure can be modified to determine which links can be

solved.

We say that complete data is available from a subset S if ��x�� 	 � for all x� such that R��� x�� � S,

i.e,. for which reports are received from all receivers in S and no others. Let S� denote the set of subsets
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S of R for which complete data is available, and �c denote the set of missingness parameters � for which

U � �S�SUS .

Theorem 8 Restrict the parameter space to A��c and assume data is MCAR. Then P��� identifies ��� ��.

Although we do not have a corresponding result for general MAR models, Theorem 8 is sufficient to

enable further analysis of simple models in the following sections.

6 Asymptotics for Large Numbers of Probes

Let �� � arg max�L��� denote the incomplete data MLE arising from (20). In this section we examine the

asymptotic properties of �� as the number of probes n grows, without specific reference to the EM algorithm.

Theorem 9 Assume data is MCAR. The incomplete data MLE �� is consistent, i.e., limn�� �� � � almost

surely.

We now describe the asymptotic variance of �� for large numbers of probes n in the regime of small

loss probabilities �. We calculate the expected Fisher information matrix for the incomplete data problem,

i.e., the matrix I��� �� � �Iij��� ���ij�U , where Iij��� � �E ��L���
��i��j

. Under conditions that we establish

below, the inverse of I���, suitably rescaled, is the asymptotic variance of ��.

Our approach is to decompose the Fisher information matrix as a sum over subtrees for which complete

data is present at the leaves. In the original incomplete data problem for the logical multicast topology T ,

the counts nS � fm�x�� j R��� x�� � Sg, for each S � R, can be considered as a set of counts of complete

outcomes on TS stemming from those probes for which reports were received only from nodes in S. Thus

the incomplete data log-likelihood function can then be decomposed as follows:

L��� �
X

S�R�S ���

Lc�TS�nS� �S�� where Lc�TS�nS� �S� �
X

x��R���x���S

m�x�� log p�S �x
�
S� (47)

and x�S � fx�k � k � Sg is the data in x� that is observable at S. The corresponding decomposition of the

expected Fisher information matrix is

Iij��� �
X

S�R�S ���

X

k��US

Ik�S ��S�
��S�k�

��i

��S���

��j
(48)

where IjkS ��S� � �E��Lc�TS �nS ��S�
��S�j���S�k�

. Let NS � nP�R�T �i��X�i��� � S� be the mean number of probes

with data observable exactly at S, andWS�i� �
P

j�KS��S�i��
�j the sum of link loss rates on the S-segment

containing i.

Theorem 10 (i) When � � �c and hence when �� is consistent,
p
n��� � �� converges in distribution to

a mean zero multivariate Gaussian random variable with covariance matrix n��I���.

(ii) When data is MCAR, Iij �PS�R�S ���
NS

WS�i�
��S�i��S�j� �O�	� as �� 
.
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Example: uniform report transmission. Let reports be transmitted independently with uniform proba-

bility p � ��� ��. Then NS � np�Sp�R��S . For each S � R, and node � � US , let CS��� denote the

matrix on U with entries Cij
S ��� � ��WS�i� if i� j � KS��� and � otherwise. For s � f�� � � � ��Rg let

Cs �
P

S��S�s

P
��US

CS���. Then

I � nC � �� �O����� where C �

�RX
s��

ps��� p��R�sCs (49)

Let PK denote the orthogonal projection onto the nullspace of a symmetric matrix K , and recursively define

matrices K�� � � � �K�R by K� � C�, and

Ks � PK�����Ks��
CsPK�����Ks

� K� � C�� (50)

Let r� denote the minimal s for which PK������Ks
� �. Since C�R � �, such a r� � �R exists.

Proposition 1 pr�C�� converges to the pseudo-inverse of Kr� as p� �.

Let I� denote the Fisher information arising from measurements on binary subsets, i.e., I� is the sum ob-

tained by restricting (48) to binary subsets S.

Proposition 2 (i) I � eI� � �, and hence � � I�� � I��� , in the order of positive linear operators.

(ii) Proposition 1 holds with r� � �.

Thus we have established:

Proposition 3 Assume independent report loss with uniform probability p. Then
p
n�	���� converges to a

multivariate Gaussian random variable with mean zero and covariance G��� p�, where limp�� p
�G��� p� �

KI� �O�k�k�� as �� �, where KI� is the pseudo-inverse of K�.

Remark: Proposition 3 suggests that we approximate the variance of 	�k by �KI��kk��np
�� when p and

� are small, and n is large.

Example: uniform report transmission from binary trees Consider the family of binary trees with �r

leaves, r � �� �� � � �, with small uniform link loss probabilities � and uniform small report transmission
rate p. Let v�r� � �v��r�� � � � � vr���r�� denote the set of unique diagonal elements of KI���, the jth

element determining the asymptotic variance on links j nodes away from the root. Using Mathematica [16]
to perform the algebra, we found the first six v�r� to be:

v��� � f
�

�
�
�

�
g� v��� � f

�

�
�
��

��
�
�

	
g� v��� � f

�

��
�
�


���
�
�	

��
�
�

�
g� v��� � f

�


�
�
��

���
�
��

���
�

�

���
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g�

v�	� � f
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�
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�
	

��
g� v��� � f

�

��
�
�

���

�����
�
���

	���
�
�	�

����
�
��

���
�
��


���
�
�

��
g (51)

In all cases the estimator variance rises in a given tree on moving away from the root, except falling slightly

at a leaf link as compared with its parent. At a given distance from the root, the link variance decreases as

the tree depth increases. Both this trends can be understood by the intuition that variance should decrease
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Figure 2: 4-RECEIVER BINARY TREE: used in model based simulation of Section 8.1.

when data is available from larger subtrees below a given link of interest. Considering the root and leaf links

only, the values in (51) are consistent with the forms

v��r� �
r

r � �

�

���r���
� vr���r� �

r

�r � �
(52)

7 Convergence Rates for the EM iterates

We now consider convergence of the EM iterates themselves. LetM denote the map on RU� that implements

the iteration, i.e., such that b������ �M�b�����. A Taylor expansion of the iterative map gives

b������ � � � rM � �b���� � �� (53)

where rMij �
�Mi

��j
is the gradient of M. A standard result [17, x3.9.3] expresses rM � �� � I��c I�,

with Ic the complete data information matrix and I the incomplete data information matrix from (48). The

convergence ratio of the iteration is taken as the maximum eigenvalue � for rM.

Our analysis of the convergence ratio is confined to the regime treated in Section 6, namely that of

independent report transmission with small probability p, and small link loss probabilities �. In this regime,

we have seen that �I��c �ij � n����i�ij �O�k�k�� and so from (49) rM���ij � �ij ��iCij �O�k�k��.

Let E�X� denote the set of eigenvalues of a matrix X .

Proposition 4 Assume independent report loss with probability p � ��� �� and small uniform probe loss

rate �. The convergence rate � for the EM algorithm obeys � � � � p�� � O�p��p � ���. where � is the

minimum non-zero eigenvalue of �K�.

8 Experiments and Simulations

In order to evaluate the performance of the missing data inference algorithm, we conducted two types of

simulation. First, we used model-based simulation in which the model for missing data indicators conformed
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with the MCAR property. Second, we used a network-based implementation of the RTCP-based reporting

mechanism outlined in Section 2.5. In this case the missing data indicators are not known to conform to

the MAR model. This enabled us to test robustness of the algorithm with respect to violations of the MAR

hypothesis that might occur in a real network application.

8.1 Model-based simulation

We conducted model based simulations on a balanced binary tree with 4 receivers, illustrated in Figure 2.

Probe losses were independent with a uniform loss rate per link. Receiver reports were generated at each

receiver for each probe and were transmitted independently with uniform probability p. We conducted 100

separate simulation runs, each of 100,000 probes. Initialization of b���� used (29). The termination criterion

for the EM algorithm was that successive iterates b����
k

should have an absolute difference of less than ����

on each link k.

Figure 3(left) shows the mean and error bars for 95% confidence of link loss rate estimates obtained

using the missing data algorithm. We also display the corresponding quantities for the complete data es-

timator applied to only those probes for which complete reports were available. In both cases the mean

estimate is close to the model loss rate, i.e. �k � ����. But note the rapid widening of error bars for the full

data algorithm, compared with the missing data algorithm, as the report transmission probability decreases.

From Prop. 3 we expect the standard error of the link loss rate estimates to diverge as p�� for the missing

data algorithm, regardless of the topology. However, in a 4-leaf tree the number of probes with complete

data is proportional to p�. Hence we expect the standard error to diverge as p��, with faster divergence for

trees with more receivers. In this example, for p less than ���, the error bars encompass loss rate �: the

inferred loss from complete becomes statistically indistinguishable from �.

Figure 3(right) breaks down the standard error of the link loss rate estimates according to the location of

the link in the topology links 1, 2 and 4 being representative of links respectively 0, 1 and 2 links removed

from the root. The experimental standard errors show close agreement with the theoretical values obtained

by inverting the information matrix I in (49). We also show the small p approximation obtained using

Proposition 3 and the values v��� from (51). The approximation remains reasonable even for quite large p.

8.2 RTCP-based experiments

The RTCP-based simulations used data gathered from a network-based implementation of loss reporting.

Loss reports are embedded in RTCP feedback packets; any collector listening to these can then perform

inference. The basic RTCP reporting mechanism includes only the average loss rate based on sequence

numbers of received packets. An extension of the report format allows the inclusion of a binary vector

indicating receipt or otherwise of a set of packets.

According to the RTP standard [20], the total report volume over all receivers should not exceed 5% of

the source rate. RTCP clients estimate their share of this based upon the reports they hear from the other

receivers, and limit report frequency and size accordingly. Consequently, for a sufficiently large number of

receivers, it will not be possible to report on all probes. Missingness arises then by two mechanisms: the

omission of certain probes from reporting, and the loss of report packets during transmission to the collector.
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Figure 3: VARIANCE OF MISSING DATA ESTIMATOR IN 4-RECEIVER UNIFORM PROBE AND PACKET

LOSS MODEL: Over 100 simulation runs each of 100,000 probes, uniform link loss � � ����, probe trans-
mission rate p from ��� to ���. LEFT: mean estimate with error bars for ��� confidence. Comparison
with estimator using only probes with complete data. RIGHT: standard error depending on link location:
experiment, theory and approximation.

The implementation of extended RTCP-based reporting used in this study has a simulation mode that

enables it to report on packet losses generated on a model topology according to a Bernoulli loss model,

rather than due to packet loss in a real network. The probe source was chosen to have the characteristics

of a GSM audio stream that could act as a probe source in real networks, sending packets at a rate of 50

per second. Since probe losses follow the assumed statistical model, only the missing data indicators can

potentially exhibit departures from our model assumptions. Report thinning and transmission then takes

place in the manner described above.

We collected traces from a 32 receiver balanced binary tree for which the link loss rates were chosen in-

dependently with a uniform distribution between 1% and 10%. The trace comprised reports on 11,956 probe

packets, encompassing about 4 minutes at 50 packets per second. The mean number of reports received for

a given probe was 18.8, so that the proportion of missing reports was 1 - 18.8/32 = 0.413. The maximum

number of reports per probe was 29, i.e. no probe had complete data. Figure 4(left) shows a scatter plot of

the 63 pairs of (actual,inferred) loss rates. The agreement is quiet close, with tight clustering around the line

of slope 1 through the origin. The median relative error over all links was only 4.5%.

Figure 4(right) displays the median, 5th and 95th percentile of the relative error over all links as a

function of the size of a subset of probes used for inference. Note that even with 2000 probes the relative

error is typically less than 50%. Hence we can expect to identify the lossiest links with measurements over

a duration less than 1 minute. The median error is only about 13% for this number of probes.
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9 Conclusions

In this paper we have extended the multicast based method for inferring network internal loss from end-to-

end measurements that was first proposed in [2]. The original method assumed the presence of complete data

specifying the set of end-points reached by each multicast probe. However, the proposed use of the RTCP

transport protocol to transmit measurements inevitably leads to missing data, either through the need to thin

data, or due to loss of reports in transmission. This motivated extending the former approach to work with

missing data. An ad hoc approach of working with subsets of complete data would have several drawbacks:

inference on all links may not be possible; inference would be inconsistent under the types of correlation

between probe data and missingness that could reasonably occur in this context (see Section 2.5); and the

estimators are not generally efficient. These considerations motivated the use of a more generally applicable

scheme that accommodates the missing data directly, under more general conditions on the missing data

mechanism.

This paper extended the Maximum-Likelihood approach of [2] to encompass missing data. We applied

the EM algorithm to generate an iterative approximation to the corresponding MLE. We analyzed conver-

gence rates for the EM algorithm itself, and for the MLE as the number of probes grows, and showed how to

calculate these rates explicitly for a particular class of models. We tested an implementation of the algorithm

in model-based simulations with known missingness statistics, and also in traces gathered from an imple-

mentation of the RTCP-based report transfer method. These results showed (i) the reduction in estimator

variance, as compared with the ad hoc approach, where applicable; and (ii) accuracy of inferred loss rates

compared with model or directly measured rates in the simulation; (iii) robustness of the approach under

potential departures from the model assumptions on the missingness statistics in the RTCP-based applica-

tion. In the RTCP-based experiments the median estimation error on a 32 receiver tree was only about 13%

for 2,000 probes, and was typically less than about 50%. Thus inference sufficiently accurate to identify the
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lossiest links could be performed on measurements collected over about a minute.

Future work is planned in two directions. First, we want to apply the same general methodology to the

estimation of other internal characteristics, such as delay, utilization and topology itself, by adapting the

framework of the present paper to work on estimation of these quantities with complete data, as performed

in [3, 9, 15] A second direction is to develop more specific models of the missing data mechanism that could

be used in a parametric approach to estimation with missing data. Lastly, we intend to publish elsewhere

details of the RTCP reporting mechanism that motivated this study.

Acknowledgment We thank Francesco Lo Presti for some useful suggestions.

10 Proofs of Theorems

Proof of Theorem 2: We first render Lc��� into the canonical form of a standard exponential family.

� Denote by � and � the elements x of � with xk all � or all � respectively.

� For x � �, denote by W ��x� those nodes k � U for which xj � � for all j � R�k�. Let W �x� be the

�-maximal elements of W ��x�. Note that W ��� � �.

� For each k � U and i � f�� �g define qk�i� � P��Xj � i��j � R�k�jXf�k� � ��.

� Define new parameters f�k � k � Ug by �k � log�qk����qk�����

� Observe that
p��x�

p����
�
Y

k�W �x�

qk���

qk���
�
Y

k�W �x�

e�k � (54)

We interpret the product over � for x � � as �.

� The map taking A to its image 	 under the change of parameters � �� � is invertible. To see this note

that given
P

x�� p��x� � �, (54) fixes the p��x� in terms of the �. These in turn determine the �k,

and hence the �k, by Theorem 2.

� Writing n��� � n�
P

x ��� n�x�, and recalling that W ��� � �, we find

Lc��� �
X

x��

n�x�
X

k�W �x�

�k 
 n log p���� �
X

k�U

Nk�k � nc����

where Nk �
P

x���k�W �x� n�x�, and c��� is the reparameterization of � log p���� in terms of �:

c��� � log
X

x��

Y

k�W �x�

e�k � (55)

The expression (55) has the form of a standard exponential family, with the log-likelihood expressed in

terms of the natural parameters � � f�k � k � Ug, sufficient statistics N � fNk � k � Ug, and cumulant
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c���. Since c��� is finite for all � � R
U the family can be considered full. However, the parameter space of

interest is the open subset � � R
U that is the image of A under the reparameterization � �� �.

Since the mapping A � � � � �� � is invertible, the parameters � are identifiable by Theorem 2(v),

and hence the exponential family is affinely independent. (A simple argument shows that natural parameters

in an open set are identifiable iff the exponential family is affinely independent). A well-known result (see

e.g. [13, Ex. 6.6.3.]) for standard exponential families then says that the MLE is the solution �� of

Nk � E�� �Nk�� k � U (56)

provided this � lies in the interior of �. But clearly
P

j�kNj � n�� � b�k�, and hence finding the solution

to (56) is equivalent to finding the solution �� to

�k � E�� �b�k�� k � U� (57)

Provided b� � G, then by Theorem 1, b� is the unique such solution, and hence if it lies in A it is the MLE.

Proof of Theorem 3: Observe that E��Lc��
��jm� �

P
x�� E��n�x�jm� log p���x�. Hence maximizing

Q
b������� over �� is equivalent to finding the complete-data MLE, but with n�x� replaced by E

b���� �n�x�jm�

throughout. In particular, b�k, being a linear combination of the n�x�, gets replaced by b����k . Now if b���� � A
then it is not hard to see that b�

b�����x�� � G for each x�, and hence b���� � G since G is convex. The result

then follows from Theorems 1 and 2.

Proof of Theorem 4: The condition says that the sequence of EM iterates exists in A. Parts (i) and

(ii) follow from Theorem 6 of [22]. This is because: (a) by Theorem 1(iii), b������ is stationary for � ��

Q��� b�����; (b) r�Q���� �� is clearly continuous for ���� �� � A � A; and (c) By Theorem 2, Lc comes

from a regular exponential family and hence kb������ � b����k � � as ���; see remark 3(vi) in [22]. Part

(iii) then follows from Corollary 1 in [22]

Proof of Theorem 5: For the proof we observe the following Markov property of the probe process X:

(M) Conditioned on Xi � �, the distributions of the sets of variables fXk � k � R�i�g are independent

for different i � d�k�.

If y�k � �, then �j�R�k�xj � �, and hence b�k���x�� � �. Suppose instead that y�k � �. Let Q�k� denote

the event that Xj � � for all j � R�k� x�� if R�k� x�� �� 	, otherwise take Q�k� as the universal set in the

underling probability space. Since y�h � � for h � h�k� x��, then fX� � x�g � fXh � �g and hence

fX� � x�g � fXh � �g 
Q�d�h� k�� 
 fX�
j � x�j � j � R n R�d�h� k��g. This yields that

P���j�R�k�Xj � � j X� � x�� �
P��f�j�R�k�Xj � �g 
Q�d�k� h�� j Xh � ��

P��Q�d�k� h�� j Xh � ��
� (58)

where we have used property (M), and the fact that P�A j B 
 C 
D� � P�A j C j B� when A and C are

conditionally independent of D given B.
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The denominator in (58) is just cd�h�k�. To treat the numerator, observe that

P��f�j�R�k�Xj � �g �Q�i� j Xf�i� � �� (59)

� P��f�j�R�k�Xj � �g �Q�d�k� i�� � fXi � �g �j�d�i�nd�k�i� Q�j� j Xf�i� � ��

� P��f�j�R�k�Xj � �g �Q�d�k� i�� j Xi � � j Xf�i� � ��P��Xi � � j Xf�i� � ��
Y

j�d�i�nd�k�i�

P��Q�j� j Xi j Xf�i��

� P��f�j�R�k�Xj � �g �Q�d�k� i�� j Xi � �� �i

Y

j�d�i�nd�k�i�

cj �

Here we have used Q�j� � �i�d�j�Q�i�, the Markov property (M), and the fact that fXk � �g �

fXf�k� � �g. Applying (59) repeatedly to the numerator of (58), we obtain the form P��f�j�R�k�Xj �

�g �Q�k� j Xf�k� � ��
Q

k�i�d�k�h� �i
Q

j�d�i�nfd�i�k�g cj .

The first term is in this product is P��f�j�R�k�Xj � �g � Q�k� j Xf�k� � �� � ckP��f�j�R�k�Xj �

�g j Q�k� j Xf�k� � �� � ck���P���j�R�k�Xj � � j Xf�k� � ���ck� � ck� bk, and the stated result (35)

follows.

Proof of Lemma 1: We first show that for each k � V there is some x� � ��
� with m�x�� � � for which

b�k���x
�� � �. By condition (38) there is x� with m�x�� � �, for which either x�j � � or x�j � u for some

j � R�k�. In the former case b�k���x�� � �– or x�j � u; in the latter case it is not hard to see in Theorem 5

that ck � bk and hence b�k���x�� � �. Since b�k���x�� � � for all x� � ��
�, then b�k�� � �.

By (40) then for each k � V nR there exists x� with m�x�� � � such that b�k���x�� � �, and children j� �

of k for which b�j���x
�� � � while b�j���x�� � �. Hence b�k���x�� �

P
j�d�k� b�j���x��. Since by definition

b�k���x�� �
P

j�d�k� b�j���x�� for all x�, we have b�k�� �
P

j�d�k� b�j��.

Taking these relations over all relevant k, we conclude that b�� � G.

Proof of Theorem 6: Reparameterizing the incomplete data likelihood function L in terms of �, we
obtain

L � n���� log��� � �� � ��� � n���� log��� � ��� � n���� log��� � ��� � n���� log��� ���

�n��u� log���� � n�u�� log���� � n��u� log��� ��� � n�u�� log��� ���

Writing this form as L �
P

x����

�

n�x��Lx� , it suffices to show that �Lx� is jointly convex in ��� ��� ��

for each x�. This follows from the fact, established by direct computation, that the principal minors of the

Hessian matrices ����Lx����i��j�ij������ are non-negative. Convergence then follows from Theorem 4

and the standing assumptions (38) and (40).

Remark: the method used in the proof appears not to extend to more general trees, not even binary ones.

Proof of Theorem 7: (i) We establish that if U � �mi��USi
, then there is a unique solution x. We

do this by contradiction. Suppose that there exists a node k � V such that there does not exist a unique
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value for xk. Pick any such �-maximal k. By assumption, k terminates some segment KSi
�k� and hence

xk � �Si
�k��

P
k�j�fSi�k�

xj . By the maximality assumption, all terms on the RHS are unique, and hence

so is xk.

We establish now that if there is a unique solution x, then U � �mi��USi . This is done by contradiction.

First, note if the solution x is unique, it must be xk � log�k. Second, note that we only need to consider a

branch point k � U nR. Assume there exists k �� �mi��USinR. Then every segment containing v � d�k� also

contains k. Using xk � log�k we can reduce the family of equations f�Si � DSixg
m
i�� to the following set

of equations describing the behavior of xk and xv , v � d�k�,

xk � xv � ��v� �v � d�k� (60)

where ��v is the log of the probability of a reception of a packet at v � d�k� given that it was received at

f�k�. The ��v are determined by the link probabilities other than �k and �v , v � d�k�, and the original �Si .

However, these equations do not have a unique solution, resulting in a contradiction.

(ii) The solution x to f�Si � DSixg
m
i�� is not unique if and only if there is more that one set of link

probabilities � giving rise to the same f�Sig
m
i�� and hence the same fP����Sig

m
i��.

Proof of Theorem 8: With MCAR the missingness probabilities do not depend on any data, and so

we can replace ��x�� with ��t�x���. Since
P

x��t�x���t� p
�
��x

�� � � for all t� � f�� �gR , q����x�� �

q������x����x� � �� implies � � ��.

Consider now any S � R for which complete data is available. Then ��t�x��� are equal and hence

strictly positive for any x� with R��� x�� � S. Hence q����x�� � q������x�� implies p��x�� � p���x��. By

Theorem 1(iv), �S is identifiable. Then � is identifiable by Theorem 7(ii) since � � �c.

Proof of Theorem 9: The proof of mirrors that of Theorem 3(ii) in [2] which in turn uses Lemma 7.54 in

[19]. Although not mentioned there, the latter result requires identifiability. This follows from the MCAR

assumption and Theorem 8.

Proof of Theorem 10: We first show that IS is positive definite if complete data is available from S. By

standard arguments (see e.g. Prop 2.84 in [19]) one writes IjkS ��S� � Cov����
�Lc�TS �nS ��S�

��S�j�
� �Lc�TS �nS ��S�

��S�k�
�.

If IjkS ��S� is not positive definite, there exists some nonzero c � R
US for which c � IS��S� � c � Var����c �

�Lc�TS �nS ��S�
��S

� � �. This happens if c��Lc�TS �nS ��S�
��S

� �, almost surely, or, equivalently, if c�
� log p�S �x�

S
�

��S
�

� for all x�S , since ��x�� � � by assumption. Repeating the argument of Theorem 4(ii) in [2], this requires

c � �.

Observe that ��S
��

� B��S�DSB
����� where B��� is the diagonal matrix with entries from �. Thus

I �
P

S�S�
B�����DT

SB��S�IS��S�B��S�DSB
�����, in the order of positive linear operators. Since

the kernel of a sum of non-negative definite operators is the intersection of their kernels, the sum is positive

definite iff �S�S� ker�DS� � f�g, which happens iff the equations f�S � DSxgS�S� have a unique solution

x, which is guaranteed by Theorem 7(i) and the assumption that � � �c.
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(ii) Let S � S�. Note �S�k���i � DS�ki���O�k�k��. With data MCAR, the ��x�� are equal for any x�

with R��� x�� � S, and hence Em�x�� � NSp
�

��x
�� � NSp�S�x

�

S�. From Theorem 5 of [2], N��S IS��S�

has inverse �S for which �k�S � �S�k��k� � O�k�Sk
��. Hence Ik�S ��S� �

NS

�S�k�
��k� � O�k�Sk�. Finally,

observe that �S��S�i�� �WS�i� �O�k�k��. Putting these together with (48) the result follows.

Proof of Proposition 1: Rewrite C �
P�R

s�� p
sC �

s where C �
s �
P

��t�sCt � ����
s�t
�
n�t
s�t

�
. Observe that

the definition ofKs is invariant under replacement ofCs byC �
s in (50) since PK������Ks��

Cs�PK������Ks��
�

� for s� � s. Let Ws denote the unitary matrix that diagonalizes Ks and set W �
Qr�

i��Ws. (Since the

ranges of the Ks are disjoint, the various Ws commute). Then up to unitary transformation under W , we

can write C is block diagonal form

C �W

�
BBB�

pA���p� p�A���p� � � � pr�A�r��p�
p�A���p� p�A���p� � � � pr�A�r��p�

...
...

. . .
...

pr�Ar���p� pr�Ar���p� � � � pr�Ar�r��p�

�
CCCAW T (61)

where Aij�p� � AT
ji�p�, and each submatrix Aij converges to some Aij as p � � such that the block

matrix with Ass as the sth diagonal element and zero elsewhere is unitarily equivalent to Ks under W .

By construction, the Ass are invertible, and hence so are the Ass�p� for sufficiently small p. The block

diagonal representation of C can be inverted inductively as follows. Assume the block submatrix B�s����s���
comprising the first s � � blocks can be inverted and that B���s����s��� is O�p��s� as p � �. This condition

is trivially satisfied for s � �. Now write B�s��s� as a two-by-two superblock matrix

B�s��s� �

�
B�s����s��� B�s��� s

Bs �s��� psAss�p�

�
(62)

Then B��
�s��s� � Ds���p� �D

��
s���p� where

Ds���p� �

�
B��

�s����s��� �p�sB��
�s����s���B�s��� sA

��
ss

�p�

�p�sA��
ss

�p�Bs �s���B
��
�s����s��� p�sA��

ss
�p�

�
(63)

Ds���p� �

�
�� p�sB�s��� sA

��
ss

�p�Bs �s���B
��
�s����s��� �

� �� p�sBs �s���B
��
�s����s���B�s��� sA

��
ss

�p�

�
(64)

Now B�s����s � O�ps� as p� �, from which it follows that

B�s�s��p� �

�
� �

� p�sA��
ss

�
�O�p��s�	 (65)

Consequently, B��
�ss� � O�p�s� as p � �, completing the induction step. The statement of the Proposition

then follows from (65) by taking s � r	.

Proof of Proposition 2: (i) In the given model, NS 
 � for all subsets S of R, and hence I � I�. Since

each node in U � R has at least two descendent leaves U � ��S��US and hence I� 
 � by an argument
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similar to that in Theorem 7(i). Now if A � B � � then � � �� a � �� b � � where a � A���kAk� and

b � B���kAk�. Since k��ak� k��bk � �, a�� � ������a���� �
P�

i�����a�
i �
P�

i�����b�
i � b��,

whence the result follows.

(ii) Consider inference performed by using only measurements from binary sets S. I� � pQ��p
�Q� for

some Q� and Q� independent of p, and hence I��
�

is O�p���. By (i), I�� � I��
�

, which precludes r� � �

in Proposition 1. We conclude r� � � by showing that K� has � as an eigenvalue, for then r� � �. Assume

that the root � as a unique child �. If not, partition the T into disjoint subtrees with nodes descended from

each child of �, then apply the following argument to each subtree. Let v denote the element of RU with

v��� � �, v�j� � �� for j � d���, and v�k� � � otherwise. Observe that for each k � R, the Cfkg�k�ij are

equal for i� j � f�� d�k� ��g. Since C� �
P

k�RCfkg, then C� � v � �.

Proof of Proposition 4: max E�rM� � ���minE�C� �O����. From Propositions 1 and 2 we know

that C takes the block diagonal form (61) with r� � �. From this is follows that each eigenvalue of C

takes the form pivi�p� � O�pi��� for some i � f�� �g, where limp�� vi�p� � E�Aii�. Since � �� E�Aii�,

p��minE�C�� minE�A��� as p� �, and hence the result follows.
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Abstract

Packet delay greatly influences the overall performance of network applications. It is there-
fore important to identify causes and location of delay performance degradation within a net-
work. Existing techniques, largely based on end-to-end delay measurements of unicast traffic,
are well suited to monitor and characterize the behavior of particular end-to-end paths. Within
these approaches, however, it is not clear how to apportion the variable component of end-to-
end delay as queueing delay at each link along a path. Moreover, they suffer of scalability
issues if a significant portion of a network is of interest.

In this paper, we show how end-to-end measurements of multicast traffic can be used to
infer the packet delay distribution and utilization on each link of a logical multicast tree. The
idea, recently introduced in [4, 5] is to exploit the inherent correlation between multicast ob-
servations to infer performance of paths between branch points in a tree spanning a multicast
source and its receivers. The method does not depend on cooperation from intervening net-
work elements; because of the bandwidth efficiency of multicast traffic, it is suitable for large
scale measurements of both end-to-end and internal network dynamics. We establish desirable
statistical properties of the estimator, namely consistency and asymptotic normality. We eval-
uate the estimator through simulation and observe that it is robust with respect to moderate
violations of the underlying model.

Keywords. End-to-end measurements, queueing delay, estimation theory, multicast tree, network
tomography.

�This work was sponsored in part by the DARPA and the Air Force Research Laboratory under agreement F30602-
98-2-0238.
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1 Introduction

Background and Motivation. Monitoring the performance of large communications networks

is essential for diagnosing the causes of performance degradation. There are two broad approaches

to monitoring. In the internal approach, direct measurements are made at or between network

elements, e.g. of packet loss or delay. In the external approach, measurements are made across a

network on end-to-end or edge-to-edge paths.

The internal approach has a number of potential limitations. Due to the commercial sensitivity

of performance measurements, and the potential load incurred by the measurement process, it is

expected that measurement access to network elements will be limited to service providers and,

possibly, selected peers and users. The internal approach assumes sufficient coverage, i.e. that

measurements can be performed at all relevant elements on paths of interest. In practice, not all

elements may possess the required functionality, or it may be disabled at heavily utilized elements

in order reduce CPU load. On the other hand, arranging for complete coverage of larger networks

raises issues of scale, both in the in the gathering of measurement data, and joining data collected

from a large number of elements in order to form a composite view of end-to-end performance.

This motivates external approaches, network diagnosis through end-to-end measurements, with-

out necessarily assuming the cooperation of network elements on the path. There has been much

recent experimental work to understand the phenomenology of end-to-end performance (e.g., see

[3, 9, 19, 26, 27, 29]). Several research efforts are working on the developments of measurement

infrastructure projects (Felix [13], IPMA [15], NIMI [18] and Surveyor [35]) with the aim to col-

lect and analyze end-to-end measurements across a mesh of paths between a number of hosts.

Standard diagnostic tools for IP networks, ping and traceroute report roundtrip loss and de-

lay, the latter incrementally along the IP path by manipulating the time-to-live (TTL) field of probe

packets. A recent refinement of this approach, pathchar [17], estimates hop-by-hop link capac-

ities, packet delay and loss rates. pathchar is still under evaluation; initial experience indicates

many packets are required for inference leading to either high load of measurement traffic or long

measurement intervals, although adaptive approaches can reduce this [10]. More broadly, measure-

ment approaches based on TTL expiry require the cooperation of network elements in returning

Internet Control Message Protocol (ICMP) messages. Finally, the success of active measurement

approaches to performance diagnosis may itself cause increased congestion if intensive probing

techniques are widely adopted.

In response to some of these concerns, a multicast-based approach to active measurement has

been proposed recently in [4, 5]. The idea behind the approach is that correlation in performance
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seen on intersecting end-to-end paths can be used to draw inferences about the performance charac-

teristics of the common portion (the intersection) of the paths, without the cooperation of network

elements on the path. Multicast traffic is particular well suited for this since a given packet only

occurs once on a given link in the (logical) multicast tree. Thus characteristics such as loss and

end-to-end delay of a given multicast packet as seen at different endpoints are highly correlated.

Another advantage of using multicast traffic is scalability. Suppose packets are exchanged on a

mesh of paths between a collection of N measurement hosts stationed in a network. If the pack-

ets are unicast, then the load on the network may grow proportionally to N� in some parts of the

network, depending on the topology. For multicast traffic the load grows proportionally only toN .

Contribution The work of [4, 5] showed how multicast end-to-to measurements can be used to

infer per link loss rates in a logical multicast tree. In this paper we extend this approach to infer the

probability distribution of the per link variable delay. Thus we are not concerned with propagation

delay on a link, but rather the distribution of the additional variable delay that is attributable to

either queuing in buffers or other processing in the router. A key part of the method is an analysis

that relates the probabilities of certain events visible from end-to-end measurements (end-to-end

delays) to the events of interest in the interior of the network (per-link delays). Once this relation

is known, we can estimate the delay distribution on each link from the measured distributions of

end-to-end delays of multicast packets.

For a glimpse of how the relations between end-to-end delay and per link delays could be

found, consider a multicast tree spanning a source of multicast probes (identified as the root of the

tree) and a set of receivers (one at each leaf of the tree). We assume the packets are potentially

subject to queuing delay and even loss at each link. Focus on a particular node k in the interior of

the tree. If, for a given packet, the source-to-leaf delay does not exceed a given value on any leaf

descended from k, then clearly the delay from the root to the node k was less than that value. The

stated desired relation between the distributions of per-link and source-to-leaf delays is obtained

by a careful enumeration of the different ways in which end-to-end delay can be split between the

portion of the path above or below the node in question, together with the assumption that per-

link delays are independent between different links and packets. We shall comment later upon the

robustness of our method to violation of this independence assumption.

We model link delay by non-parametric discrete distributions. The choice of non parametric

distributions rather than a parameterized delay model is dictated by the lack of knowledge of

the distribution of link delays in networks. While there is significant prior work on the analysis

and characterization of end-to-end delay behavior (see [2, 24, 27]), to the best of our knowledge

95



there is no general model for per link delays. The use of a non-parametric model provides the

flexibility to capture broadly different delay distributions, albeit at the cost of increasing the number

of quantities to estimate (i.e. the weights in the discrete distribution). Indeed, we believe that our

inference technique can shed light on the behavior and dynamics of per link delays and so provide

useful results for the analysis and modeling; this we will consider in future work.

The discrete distribution can be a regarded as binned or discretized version of the (possibly

continuous) true delay distribution. Use of a discrete rather than a continuous distribution allows

us to perform the calculations for inference using only algebra. Formally, there is no difficulty in

formulating a continuous version of the inference algorithm. However, it proceeds via inversion

of Laplace transforms, a procedure that is in practice implemented numerically. In the discrete

approach we can explicitly trade-off the detail of the distribution with the cost of calculation; the

cost is inversely proportional to the bin widths of the discrete distribution.

The principle results of the analysis are as follows. Based on the independent delay model,

we derive an algorithm to estimate the per link discrete delay distributions and utilization from the

measured end-to-end delay distributions. We investigate the statistical properties of the estimator,

and show it to be strongly consistent, i.e., it converges to the true distribution as the number of

probes grows to infinity. We show that the estimator is asymptotically normal; this allows us to

compute the rate of convergence of the estimator to its true value, and to construct confidence

intervals for the estimated distribution for a given number of probes. This is important because the

presence of large scale routing fluctuation (e.g. as seen in the Internet; see [26]) sets a timescale

within which measurement must be completed, and hence the accuracy that can be obtained when

sending probes at a given rate.

We evaluated our approach through extensive simulation in two different settings. The first set

used a model simulation in which packet delays obey the independence assumption of the model.

We applied the inference algorithm to the end-to-end delays generated in the simulation and com-

pared the (true) model delay distribution. We verified the convergence to the model distribution,

and also the rate of convergence, as the number of probes increased.

In the second set of experiments we conducted an ns simulation of packets on a multicast tree.

Packet delays and losses were entirely due to queueing and packet discard mechanisms, rather than

model driven. The bulk of the traffic in the simulations was background traffic due to TCP and

UDP traffic sources; we compared the actual and predicted delay distributions for the probe traffic.

Here we found rapid convergence, although with some persistent differences with respect to the

actual distributions.

These differences appear to be caused by violation of the model due to the presence of spa-
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tial dependence (i.e., dependence between delays on different links). In our simulations we find

that when this type of dependence occurs, it is usually between the delays on child and parent

links. However, it can extend to entire paths. As far as we know there are no experimental results

concerning the magnitude of such dependence in real networks. In any case, by explicitly intro-

ducing spatial correlations into the model simulations, we were able to show that small violations

of the independence assumption lead to only small inaccuracies of the estimated distribution. This

continuity property of the deformation in inference due to correlations is also to be expected on

theoretical grounds.

We also verified the presence of temporal dependence, i.e., dependence between the delays

between successive probes on the same link. This is to be expected from the phenomenology of

queueing: when a node is idle, many consecutive probes can experience constant delay; during

congestion, probes can experience the same delay if their interarrival time is smaller than the con-

gestion timescale. This poses no difficulty as all that is required for consistency of the estimator is

ergodicity of the delay process, a far weaker assumption than independence. However, dependence

can decrease the rate of convergence of the estimators. In our experiments, inferred values closely

tracked the actual ones despite the presence of temporal dependence.

Implementation Requirements Since the data for delay inference comprises one-way packet

delays, the primary requirement is the deployment of measurement hosts with synchronized clocks.

Global Positioning System (GPS) systems afford one way to achieve a synchronization to within

tenths of microseconds; it is currently used or planned in several of the measurement infrastructures

mentioned earlier. More widely deployed is the Network Time Protocol (NTP) [20]. However, this

provides accuracy only on the order of milliseconds at best, a resolution at least as coarse as the

queueing delays in practice. An alternative approach that could supplement delay measurement

from unsynchronized or coarsely synchronized clocks has been developed in [28, 30, 21]. These

authors propose algorithms to detect clock adjustments and rate mismatches and to calibrate the

delay measurements.

Another requirement is knowledge of the multicast topology. There is a multicast-based mea-

surement tool, mtrace [23], already in use in the Internet. mtrace reports the route from a

multicast source to a receiver, along with other information about that path such as per-hop loss

and rate. Presently it does not support delay measurements. A potential drawback for larger

topologies is that mtrace does not scale to large numbers of receivers as it needs to run once for

each receiver to cover the entire multicast tree. In addition, mtrace relies on multicast routers

responding to explicit measurement queries; a feature that can be administratively disabled. An
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alternative approach that is closely related to the work on multicast-based loss inference [4, 5] is to

infer the logical multicast topology directly from measured probe statistics; see [31] and [7]. This

method does not require cooperation from the network.

Structure of the Paper. The remaining sections of the paper are organized as follows. In Sec-

tion 2 we describe the delay model and in Section 3 we derive the delay estimator. In Section 4 we

describe the algorithm used to compute the estimator from data. In Section 5 we present the model

and network simulations used to evaluate our approach. Section 6 concludes the paper.

2 Model & Framework

2.1 Description of the Logical Multicast Tree

We identify the physical multicast tree as comprising actual network elements (the nodes) and the

communication links than join them. The logical multicast tree comprises the branch points of the

physical tree, and the logical links between them. The logical links comprise one or more physical

links. Thus each node in the logical tree, except for the leaf nodes and possibly the root, must

have 2 or more children. We can construct the logical tree from the physical tree by deleting all

links with one child (except for the root) and adjusting the links accordingly by directly joining its

parent and child.

Let T � �V�L� denote the logical multicast tree, consisting of the set of nodes V , including

the source and receivers, and the set of links L, which are ordered pairs �j� k� of nodes, indicating

a link from j to k. We will denote U � V n f�g. The set of children of node j is denoted by

d�j�; these are the nodes whose parent is j. Nodes are said to be siblings if they have the same

parent. For each node j, other than the root 0, there is a unique node f�j�, the parent of j, such

that �f�j�� j� � L. Each link can therefore be also identified by its “child” endpoint. We shall

define fn�k� recursively by fn�k� � f�fn���k�� with f� � f . We say that j is a descendant of

k if k � fn�j� for some integer n � �, and write the corresponding partial order in V as j � k.

For each node j we define its level ��j� to be the non-negative integer such that f��j��j� � �. The

root � � V represents the source of the probes and the set of leaf nodes R � V (i.e., those with no

children) represents the receivers.
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2.2 Modeling Delay and Loss of Probe Packets

Probe packets are sent down the tree from the root node 0. Each probe that arrives at node k results

in a copy being sent to every child of k. We associate with each node k a random variable Dk taking

values in the extended positive real line R� � f�g. By convention D� � �. Dk is the random

delay that would be encountered by a packet attempting to traverse the link �f�k�� k� � L. The

value Dk �� indicates that the packet is lost on the link. We assume that the Dk are independent.

The delay experienced on the path from the root � to a node k is Yk �
P

j�k Dj . Note that Yk ��

iff Dj �� for some j � k, i.e. if the packet was lost on some link between node � and k.

Unless otherwise stated, we will discretize each link delay Dk to a set f�� q� �q� � � � � imaxq��g.

Here q is the bin width, imax � � is the number of bins, and the point � is interpreted as “packet

lost” or “encountered delay greater than imaxq”. The distribution of Dk is denoted by �k, where

�k�i� � P�Dk � iq� with �k��� the probability that Dk � �. For each link, we denote uk the

link utilization; then, uk � �� �k���, the probability that a packet experience delay or it is lost in

traversing link k.

For each k � V , the cumulative delay process Yk , k � V , takes values in f�� q� �q� � � � � imaxq��k���g,

i.e., it supports addition in the ranges of the constituent Dj . We set Ak�i� � P�Yk � iq� with

Ak��� the probability that Yk � �. Because of delay independence, for finite i, Ak�i� �
Pi

j�� �k�j�Af�k��i� j�, k � U ; by convention A���� � �.

We consider only canonical delay trees. A delay tree consists of the pair �T � ��, T � �V�L�,

� � ��k�i��k�U�i�f������imaxg. A delay tree is said to be canonical if �k��� � �, �k � U , i.e., if there

is a non-zero probability that a probe experiences no delay in traversing each link.

3 Delay Distribution Estimator and its Properties

Consider an experiment in which n probes are sent from the source node down the multicast tree.

As result of the experiment we collect the set of source-to-leaf delays �Yk�l�k�R�l�������n. Our goal is

to infer the internal delay characteristics solely from the collected end-to-end measurements.

In this section we state the main analytic results on which inference is based. In Section 3.1

we establish the key property underpinning our delay distribution estimator, namely the one-to-

one correspondence between the link delay distributions and the probabilities of a well defined set

of observable events. Applying this correspondence to measured leaf delays allows us to obtain

an estimate of the link delay distribution. We show that the estimator is strongly consistent and

asymptotically normal. In Section 3.2 we present the proof of the main result which also provides
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the construction of the algorithm to compute the estimator we present in Section 4. In Section 3.4

we analyze the rate of convergence of the estimator as the number of probes increase.

3.1 The Delay Distribution Estimator

Let T �k� � �V �k�� L�k�� denote the subtree rooted at node k and R�k� � R � V �k� the set

of receivers which descend from k. Let �k�i� denote the event fminj�R�k� Yj � iqg that the

end-to-end delay is no greater than iq for at least least one receiver in R�k� . Let �k�i� �

P��k�i�� denote its probability. Finally let � denote the mapping associating the link distribu-

tions ��k�i��k�U�i�f������imaxg to the probabilities of the events �k�i�, � � ��k�i��k�U�i�f������imaxg. The

proof of the next result is given in the following section.

Theorem 1 Let A � f� � ��k�i��k�U�i�f������imaxg � �k��� � ��
P

i�imax
�k�i� � 	g and

G � f� � ��k�i��k�U�i�f������imaxg � �� � Aj� � ����g. � is a bijection from A to G which is

continuously differentiable and has a continuously differentiable inverse.

Estimate � by the empirical probabilities b�, where

b�k�i� � n��
nX

m��

�fbYk�m�iqg
� (1)

�fSg denotes the indicator function of the set S and �bYk�m�k�U�m�������n are the subsidiary quantities

bYk�m � min
d�R�k�

bYd�m� k � U� (2)

Our estimate of �k�i� is b�k�i� � �����b���k�i�. We estimate link k utilization by buk � 	 � b�k���.

Let A��� � f� � ��k�i��k�U�i�f������imaxg � �k��� � ��
P

i�imax
�k�i� � 	g denote the open

interior of A. The following holds:

Theorem 2 When � � ��A����, as n � �, b� � ����b�� converge almost surely to �, i.e., the

estimator is strongly consistent.

Proof: Since ��� is continuous on ��A���� and A��� is open in A, it follows that ��A���� is an

open set in ��A�. By the Strong Law of large numbers, since b� is the mean of n independent

random variables, b� converges to � almost surely for n��. Therefore, when � � ��A����, there

exists n� such that b� � ��A����, n � n�. Then, the continuity of ��� insures that b� converges

almost surely to � as n��.
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3.2 Proof of Theorem 1

To prove the Theorem, we first express � as function of � and then show that the mapping from A

to G is injective.

3.2.1 Relating � to �

Denote �k�i� � P�minj�R�k� Yj � Yf�k� � iq�, i � �� � � � � imax. �k�i� obeys the recursion

�k�i� �
Pi

j�� �k�j�
h
��
Q

d�d�k� �� � �d�i� j��
i

k � U nR

�k�i� �
Pi

j�� �k�j� k � R�
(3)

Then, by observing that

�k�i� �
iX

j��

�k�i� j�Af�k��j�� (4)

k � U nR, we readily obtain

�k�i� �
Pi

j��Ak�j�
h
��
Q

d�d�k� ��� �d�i� j��
i

k � U nR

�k�i� �
Pi

j��Ak�j� k � R
(5)

The set of equations (5) completely identifies the mapping � from A to G. The mapping is clearly

continuously differentiable. Observe that the above expressions can be regarded as a generalization

of those derived for the loss estimator in [4] (by identifying the event no delay with the event no

loss).

3.2.2 Relating � to �

It remains to show that the mapping from A to G is injective. To this end, below we derive an

algorithm for inverting (5). We postpone to Appendix A the proof that the inverse is unique and

continuously differentiable. For sake of clarity we separate the algorithm into two parts: in the first

we derive the cumulative delay distributions A from �; then, we deconvolve A to obtain �.

Computing A

Step 0:

Solve (5) for i � �. This amounts solving the equation

��� �k����Ak���� �
Y

d�d�k�

��� �d����Ak����� k � U nR (6)
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and

�k��� � Ak���� k � R� (7)

This equation is formally identical to the one of the loss estimator [4]. From [4], we have that the

solution of (6) exists and is unique in ��� �� provided that � � �k��� �
P

d�d�k� �d��� which holds

for canonical delay trees. We then compute �k��� � �k����Af�k����, k � U .

Step i:

Given Ak�j� and �k�j�, k � U , j � �� � � � � i � �, in this step we compute Ak�i� and �k�i�,

k � U . For k � U n R, in expression (5) we replace �d�i� with
�d�i��

Pi��
j�� �d�i�j�Ak�j���d���Ak�i�

Ak���

(from (4)) and obtain the following equation

�k�i� �Ak���

�Q
d�d�k�

�
� �

�d�i��
Pi��

j�� �d�i�j�Ak�j���d���Ak�i�
Ak���

�
� �

�
�

Pi��
j��Ak�j�

nQ
d�d�k� ��� �d�i� j��� �

o
�Ak�i�

nQ
d�d�k� �� � �d����� �

o
� �

(8)

(the unknown term Ak�i� is highlighted in boldface). This is a polynomial in Ak�i� of degree

�d�k�. As shown in Appendix A we consider the second largest solution of (8).

For k � R, we directly compute Ak�i� from (5), Ak�i� � �k�i� �
Pi��

j��Ak�j�. Then we

compute �k�i�, k � U , as �k�i� �
�k�i��

Pi
j�� Af�k��j��k�i�j�

Af�k����
�

Computing �

Once step imax is completed, we compute �k�i�, k � U as follows

�k�i� �

��
�

Ak���
Af�k����

i � �
Ak�i��

Pi
j�� Af�k��j��k�i�j�

Af�k����
i � �� � � � � imax�

(9)

3.3 Example: the Two-leaf Tree

In this section we illustrate the application of the results of Section 3.1 to the two-leaf tree of

Figure 1. We assume that on each link, a probe either suffers no delay, a unit amount of delay, or

is otherwise lost; for k � f�� 	� 
g, therefore, delay takes values in f�� ���g.

For this example, equations (6) and (8) can be solved explicitly; combined with (9) we obtain
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the estimates
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b�����b����� � b�
b�����b����� � �
�
b�����b�����

b�

�
b�����
b�����

� b�����
b�����

� � �
r�

b�����
b�����

� b�����
b�����

� �
��
� �b�����b�����

b�����b�����
� �b������b������b�����

b�

�
b����� � b������b������b�����b��b�����

b�����b�����
b�b����� � b������b������b�����b��b�����

b�����b�����
b�

where b� � b����� � b����� � b�����.
3.4 Rates of Convergences of the Delay Distribution Estimator

3.4.1 Asymptotic Behavior of the Delay Distribution Estimator

In this section, we study the rate of convergence of the estimator. Theorem 2 states that b� con-

verges to � with probability 1 as n grows to infinity; but it provides no information on the rate of

convergence. Because of the mild conditions satisfied by ���, we can use Central Limit Theorem

to establish the following asymptotic result

Theorem 3 When � � ��A����, as n��,
p
n�b���� converges in distribution to a multivariate

normal random variable with mean vector 0 and covariance matrix � � D��� � � �DT ��� where

��k��i��k��j� � limn�� nCov�b�k��i��b�k��j��, for k�, k� � U , i� j � f�� � � � � imaxg, D�k� �i��k��j���� �
����

k�
�i�

��k��j�
������ and DT denotes the transpose.
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Proof: By the Central Limit Theorem, it follows that the random variables b� are asymptotically

Gaussian as n�� with p
n�b� � ��

D� N ��� ��

Here D denotes convergence in distribution. Following the same lines of the proof of Theorem

1, when � � ��A����, there existst n� such that b� � ��A����, n � n�. Then, Since ��� is

continuously differentiable on G, the Delta method (see Chapter 7 of [34]) yields that b� � ����b��
is also asymptotically Gaussian as n��:

p
n�����b�� � ��

D� N ��� ��

Theorem 3 allows us to compute confidence intervals of the estimates, and therefore their

accuracy and their convergence rate to the true values as n grows. This is relevant in assessing:

(i) the number of probes required to obtain a desired level of accuracy of the estimate; (ii) the

likely accuracy of the estimator from actual measurements by associating confidence intervals to

the estimates.

For large n, the estimator b�k�i� will lie in the interval

�k�i�� z���

r
��k�i��k�i�

n
� (10)

where z��� is the �� ��� quantile of the standard distribution and the interval estimate is a ������
��� confidence interval.

To obtain the confidence interval for b� derived from measured data from n probes, we estimate

� by b� � D�b�� � b� �DT �b�� where

b��k��i��k��j� � �

n� �

�
nX

l��

�fbYk� �l�id
V bYk� �l

�jdg �
�

n

nX
l��

�fbYk� �l
�idg

nX
l��

�fbYk� �l
�jdg

�
�

and D�b�� is the Jacobian of the inverse map ��� computed for � � b�. We then use confidence

intervals of the form

�k�i�� z���

rb��k�i��k�i�
n

� (11)

3.4.2 Dependence of the Delay Distribution Estimator on Topology

The estimator variance determines the number of probes required to obtain a given level of ac-

curacy. Therefore, it is important to understand how the variance is affected by the underlying
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Figure 3: ASYMPTOTIC ESTIMATOR VARIANCE AND TREE DEPTH. Binary tree with depth 2, 3
and 4. Left: Minimum and Maximum Variance of the estimates b�k��� (a) and b�k��� (b) over all
links.

parameters, namely the delay distributions and the multicast tree topology. The following Theo-

rem, the proof of which we postpone to Appendix C, characterizes the behavior of the variance for

small delays. Set k�k � maxk�U�i�� �k�i�.

Theorem 4 As k�k � �,

� �

�
BBBBBBB�

�k�k� � � � � � �

� �k�k� � � � � �

� � �k�k� � � � �
...

...
...

...

� � � � � � �k�Uk�U

�
CCCCCCCA
�O�k�k�� with �kk �

�
BBBBBBB�

P
i��

�k�i� �k��� �k��� � � � �k�imax�

�k��� �k��� � � � � �

�k��� � �k��� � � � �
...

...
...

...

�k�imax� � � � � � �k�imax�

�
CCCCCCCA

(12)

.

Theorem 4 states that the estimator variance is, to first order, independent of the topology. To

explore higher order dependencies, we computed the asymptotic variance for a selection of trees

with different depths and branching ratio. We use the notation T �r�� � � � � rm� to denote a tree of

m � � levels where, apart from node 0 that has one descendent, nodes at level j have exactly

rj children. For simplicity, we consider the case when link delay takes values in f�� �g, i.e., we

consider no loss, and study the behavior as function of �k��� � �.

In Figure 3 we show the dependence on tree depth for binary trees of depth 2, 3 and 4. We plot

the maximum value of the variance over the links maxk Var�b�k���� (a) and maxk Var�b�k���� (b).

In these examples, the variance increases with the tree depth. In Figure 4 we show the dependence
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Figure 4: ASYMPTOTIC ESTIMATOR VARIANCE AND BRANCHING RATIO. Binary tree with
depth 2 and 2, 4 or 6 receivers. Left: Variance of b�k��� (a) and b�k��� (b) for link 1 (common link)
and 2 (generic receiver).

on branching ratio for a tree of level 2. We plot the estimator variance for both link 1 (the common

link) and link 2 (a generic receiver). In these examples, increasing the branching ratio decreases

the variances, especially those of the common link estimates which increases less than linearly for

� up to 0.7 when the branching ratio is larger than 3. In all cases, the variance of b�k��� is larger

than b�k���.

In all cases, as predicted by Theorem 4, the estimator variance is asymptotically linear in �

independently of the topology as � � �. As � increases, the behavior is affected by different

factors: increasing the branch ratio results in a reduction of the variance, while increasing the tree

depth results in variance increase. The first can be explained in terms of the increased number of

measurements available for the estimation as the number of receivers sharing a given link increases;

the second appears to be the effect of cumulative errors that accrue as the number of links along a

path increases (� is computed iteratively on the tree). We also observe that the variance increases

with the delay lag; this appears to be caused by the iterative computation on the number of bins

that progressively cumulate errors.

4 Computation of the Delay Distribution Estimator

In this section we describe an algorithm for computing the delay distribution estimate from mea-

surements based on the results presented in the previous section. We also discuss its suitability for

distributed implementation and how to adapt the computation to handle different bin sizes.
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We assume the experimental data of source-to-leaf delays �Yk�m�k�R�m������n from n probes, as

collected at the leaf nodes k � R. Two steps must be initially performed to render the data into a

form suitable for the inference algorithms: (i) removal of fixed delays and (ii) choosing a bin size

q and computing the estimate b�.

The first step is necessary since it is generally not possible to apportion the deterministic com-

ponent of the source-to-leaf delays between interior links. (To see this, it is sufficient to consider

the case of the two receiver tree; expressing the link fixed delays in terms of the source-to-leaf

fixed delays results in two equations in three unknowns). Thus we normalize each measurement

by subtracting the minimum delay seen at the leaf. Observe that to interpret the observed minimum

delay as the transmission delay assumes that at least one probe has experienced no queuing delay

along the path).

The second step is to choose the bin size q and discretize the delays measurements accordingly.

This introduces a quantization error which affects the accuracy of the estimates. As our results have

shown, the accuracy increases as q decreases (we have obtained accurate results over a significant

range of values of q up to the same order of magnitude of the links average delay). The choice of

q represents a trade-off between accuracy and cost of the computation as a smaller bin size entails

a higher computational cost due to the higher dimensionality of the binned distributions.

These two steps are carried out as follows. From the measured data �Yk�k�R, we recursively

construct the auxiliary vector process bY � �bYk�k�V

bYk�l � Yk�l � min
m�f������ng

Yk�m� k � R (13)

bYk�l � min
j�d�k�

bYj�l� k � V nR� (14)

The binned estimates of b� are

b�k�i� � n��
nX

m��

�fbYk�m�iq�q���g
� i � �� � � � � imax� (15)

with

imax �

�
maxk�Rmaxm�Nk�n�

bYk�m
q

�
�

Here dxe denotes the smallest integer greater than x and Nk�n� � fm � f�� � � � � ngjYk�m � �g.

Observe that imax represents the largest value at which the estimate b��imax� is non zero.

The estimate can be computed iteratively over the delay lag and recursively over the tree.

The pseudo code for carrying out the computation is found in Figure 5. The procedure find y

calculates bYk and b�k, with bYk�l initialized to Yk�l � minm�f������ng Yk�m for k � R and � (a value
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procedure main f
find y ( � ) ;
foreach ( i � f�� � � � � imaxg )

infer delay ( � , i ) ;
g

procedure find y ( k ) f
foreach ( j � d�k� ) fbYj = find y ( j ) ;

foreach ( m � f�� � � � � ng )bYk�m� � minfbYk�m�� bYj�m�g;
g
foreach ( i � f�� � � � � imaxg )b�k�i� � n��

Pn
j�� �fbYk�j��iq�q��g;

return bYk ;
g

procedure infer delay ( k, i ) ;
if ( i �� � ) fbAk�i� = solvefor1 ( bAk�i� , ��� b�k�i�� bAk�i� ��

Q
d�d�k� �� b��i�� bA�i� ) ;

g else fbAk�i� = solvefor2 ( bAk�i� , b�k�i� � bAk���

�Q
d�d�k�

�
��

b�d �i��
Pi

j��
b�d�i�j� bAk�j�

bAk ����

�
� �

�
�Pi

j��
bAk�j�

nQ
d�d�k�

h
�� b�d�i� j�

i
� �

o
�� � ) ;

gb�k�i� � b�k �i��Pi
j��

bAf�k� �j�b�k�i�j�
bAf�k� ���

;

b�k�i� � bAk �i��
P

i
j��

bAf�k� �j�b�k�i�j�

bAf�k� ���
;

foreach ( j � d�k� )
infer delay ( j , i ) ;

g

Figure 5: PSEUDOCODE FOR INFERENCE OF DELAY DISTRIBUTION.

larger than any observed delay suffices) otherwise. The procedure infer delay calculates b�k�i�

for a fixed i recursively on the tree, with bAk�i�, k � V , i � �� � � � � imax initialized to 0, except for
bA���� set to 1. The output of the algorithm are the estimates b�k, k � U .

Within the code, an empty product (which occurs when the first argument of infer is a leaf)

is assumed to be zero. The routines solvefor1 and solvefor2 return the value of the first

symbolic argument that solves the equation in the second argument. solvefor1 returns a solu-

tion in ��� ��; from Lemma 1 in [4] this is known to be unique. solvefor2 returns the unique

solution if the second argument is linear in bAk�i� ( this happen only if k is a leaf-node), otherwise

it returns the second largest solution.
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4.1 Distributed Implementation

As with the loss estimator [4] the algorithm is recursive on trees. In particular, observe that the

computation of b� and bAk only requires the knowledge of �bYj�m�j�d�k��m�������n; these are computed

recursively on the the tree starting from the receivers. Therefore it is possible to distribute the

computation among the nodes of the tree (or representative nodes of subtrees), with each node k

being responsible for the aggregation of the measurements of its child nodes through (14) and for

the computation of bAk.

4.2 Adopting Different Bin Sizes

Following the results of the previous section, we presented the algorithm using a fixed value of q

for all links. This can be quite restrictive in a heterogeneous environment, where links may differ

significantly in terms of speed and buffer sizes; a single value of q could be at the same time too

coarse grained for describing the delay of a high bandwidth link but too fine-grained to efficiently

capture the essential characteristics of the delay experienced along a low bandwidth link.

A simple way to overcome this limitation is to run the algorithm for different values of q, each

best suited for the behavior of a different group of links, and retain each time only the solutions for

those links. A drawback of this approach is that each distribution is computed for all the different

bin sizes. The distributed nature of the algorithm suggests we can do better; indeed, since Ak,

k � U , can be computed independently from one another, it is possible to compute each link

delay distribution only for the bin size best suited to its delay characteristics. More precisely, let

qk denote the bin size adopted for link k. In order to compute b�k with bin size qk we need to

compute both bAk and bAf�k� with bin size qk. Thus, the overall computation requires calculating

each cumulative distribution bAk only for the bin sizes qj , j � d�k� � fkg, i.e., only for the bin

sizes adopted for the links terminating at node k and at all its child nodes rather than for bin sizes

adopted for all links.

In an implementation, we envision that a fixed value for all links is used first. This can be

chosen based on the measurements spread and the tree topology or delay past history. Then, with

a better idea of each link delay spread, it would be possible to refine the value of the bin size on a

link by link basis.

5 Experimental Evaluation

We evaluated our delay estimator through extensive simulation. Our first set of experiments focus

on the statistical properties of the estimator. We perform model simulation, where delay and loss

are determined by random processes that follow the model on which we based our analysis. In
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our second set of experiments we we investigate the behavior of the estimators in a more realistic

setting where the model assumption of independence may be violated. To this end, we perform

TCP/UDP simulation, using the ns simulator. Here delay and loss are determined by queuing

delay and queue overflows at network nodes as multicast probes compete with traffic generated by

TCP/UDP traffic sources.

5.1 Comparing Inferred vs. Sample Distributions

Before examining the results of our experiments, we describe our approach to assessing the accu-

racy of the inferred distributions. Given an experiment in which n probes are sent from the source

to the receivers, for k � V , the inferred distribution b�k ( bAk� is computed from the end-to-end mea-

surements using the algorithm described in Section 4. Its accuracy must be measured against the

actual data, represented by a finite sequence of delays fDk�mg
n
m�� (fYk�mgnm��), experienced by

the probes in traversing (reaching) that link. For simplicity of notation we assume, hereafter, that

each set of data has been already normalized by subtracting the minimum delay from the sequence.

We compare summary statistics of link delay, namely the mean and the variance. A finer eval-

uation of the accuracy lies in a direct comparison of the inferred and sample distributions. To this

end, we also compute the largest absolute deviation between the inferred and sample c.d.f.s. This

measure is used in statistics for the Kolmogoroff-Smirnoff test for goodness of fit of a theoretical

with a sample distribution. A small value for this measure indicates that the theoretical distribution

provides a good fit to the sample distribution; a large value leads to the rejection of the hypoth-

esis. We cannot directly apply the test as we deal with an inferred rather than a sample c.d.f.;

however, we will use the largest absolute deviation as a global measure of accuracy of the inferred

distributions.

We compute the sample distributions �� and �A using the same bin size q of the estimator. More

precisely, we compute ���k�k�V and � �Ak�k�V as ��k�i� � �Nf�k��n�
��
P

j�Nf�k��n�
�fDk�j��id�d���id�d���g

, i � �� � � � � imax ( ��k��� � �Nf�k��n�
��
P

j��Nf�k��n�
�fDk�j��g) and �Ak�i� � n��

Pn
j�� �fYk�j��id�d���id�d���g

, i � �� � � � � imax ( �Ak��� � n��
Pn

j�� �fYk�j��g). (Observe that in computing ���k�k�V , the sum

is carried out only over Nf�k��n� � fj � f�� � � � � ngjYf�k�� j � �g, the set over which the delay

along link k is defined either finite or infinite.)

The largest absolute deviation between the inferred and sample c.d.f.s is, then,�k � maxl�������imax

j
Pl

i�� ��k�i� �
Pl

i�� b�k�i�j. In other words, �k is the smallest nonnegative number such thatP
j�i ��k�i� lies between

P
j�i b�k�i� � �k i � �� � � � � imax. The same result holds for the tail

probabilities,
P

j�i �k�i�.
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Figure 7: AGREEMENT BETWEEN SIMULATED AND THEORETICAL CONFIDENCE INTERVALS.
(a): Results from 100 model simulations. (b): Prediction from (10). The graphs show two-sided
confidence interval at 2 standard deviation for link 1 and 2. Parameters are �k��� � ��� and
�k��� � ���� for all links.
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5.2 Model Simulation

We first consider the two-leaf topology of Figure 6(a), with source 0 and receivers 2 and 3. Link

delays are independent, taking values in f�� ���g; if a probe is not lost it experiences either

no delay or unit delay. In Figure 6(b) we plot the estimate b�k��� versus the model values for a

run comprising 10000 probes. The estimate converges within to �� of the model value within

4000 probes. In Figure 7 we compare the empirical and theoretical ��� confidence intervals.

The theoretical intervals are computed from (10). The empirical intervals are computed over 100

independent simulations. The agreement between simulation and theory is close: the two sets of

curves are almost indistinguishable.

Next we consider the topology of Figure 8. Delays are independently distributed according

to a truncated geometric distribution taking values in f�� �� � � � � ����g (in ms) . This topology

is also used in subsequent TCP/UDP simulations, and the link average delay and loss probability

are chosen to match the values obtained from these. The average delay range between 1 and 2ms

for the slower edge links and between ��� and ���ms for the interior faster links; the link losses

range from �� to ���. In Figure 9 we plot the estimated average link delay and standard deviation

with the empirical ��� confidence interval computed over 100 simulations. The results are very

accurate even for several hundred probes: the theoretical average delay always lies within the

confidence interval and the standard deviation does so for 1500 or more probes.

To compare the inferred and sample distributions, we computed the largest absolute deviation

between the inferred and sample c.d.f.s. The results are summarized in Figure 10 where we plot

the minimum, median and the maximum largest absolute deviation in 100 simulations computed

over all links as a function of n (a) and link by link for n 	 ����� (b). The accuracy increases with

the number of probes as ��
p
n with a spread of two orders of magnitude between the minimum

and maximum. For more than 3000 probes, the average largest deviation over all links is less

than ��. The accuracy varies from link to link: when the number of probes is n 	 �����, then

at one extreme we have link 4 with ���
� � �� � ��
� and at the other extreme link 6 with

���� � �� � �� over 100 simulations. We observe that the inferred distributions are less accurate

as we go down the tree. This is in agreement with the results of Section 3.4 and is explained in

terms of the larger inferred probabilities variances of downstream with respect to upstream nodes.

5.3 TCP/UDP Simulations

We used the topology shown in Figure 8. To capture the heterogeneity between edges and core

of a WAN, interior links have higher capacity (5Mb/sec) and propagation delay (50ms) then at the
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Figure 9: MODEL SIMULATION: TOPOLOGY OF FIGURE 8. ESTIMATED VERSUS THEORETI-
CAL DELAY AVERAGE AND STANDARD DEVIATION WITH ��� CONFIDENCE INTERVAL COM-
PUTED OVER 100 MODEL SIMULATIONS.
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Figure 10: MODEL SIMULATION: TOPOLOGY OF FIGURE 8. ACCURACY OF THE ESTIMATED

DISTRIBUTION. LARGEST VERTICAL ABSOLUTE DEVIATION BETWEEN ESTIMATED AND

SAMPLE C.D.F. Minimum, median and the maximum largest absolute deviation in 100 simula-
tions computed over all links as function of n (a) and link by link for n � ����� (b).

edge (1Mb/sec and 10ms). Each link is modeled as a FIFO queue with a 4-packet capacity.

Node 0 generates probes as a 20Kbit/s stream comprising 40 byte UDP packets according to

a Poisson process with a mean interarrival time of 16ms; this represents �� of the smallest link

capacity. Observe that even for this simple topology with 8 end-points, a mesh of unicast measure-

ments with the same traffic characteristics would require an aggregate bandwidth of 160Kbit/s at

the root. The background traffic comprises a mix of infinite data source TCP connections (FTP)

and exponential on-off sources using UDP. Averaged over the different simulations, the link loss

ranges between �� and ��� and link utilization ranges between ��� and ���.

For a single experiment, Figure 11 compares the estimated versus the sample average delay

for representative selected links. The analysis has been carried out using d � �ms (a) and d �

���ms (b). In this example, we practically obtain the same accuracy despite a tenfold difference

in resolution. (Observe that d � �ms is of the same order of magnitude of the average delays.)

The inferred averages rapidly converge to the sample averages even though we have persistent

systematic errors in the inferred values due to consistent spatial correlation. We shall comment

upon this later.

In order to show how the inferred values not only quickly converge, but also exhibit good dy-

namics tracking, in Figure 12 we plot the inferred versus the sample average delay for 3 links (1,

3 and 10) computed over a moving window of two different sizes with jumps of half its width. To

allow greater dynamics, here we arranged background sources with random start and stop times.

Under both window sizes (approximately 300 and 1200 probes are used, respectively), the esti-
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Figure 11: CONVERGENCE OF INFERRED VERSUS SAMPLE AVERAGE LINK DELAY IN

TCP/UDP SIMULATIONS. (a): bin-size d � �ms. (b): bin size d � ���ms. The graphs shows
how the inferred values closely track the sample average delays.
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Figure 12: DYNAMIC ACCURACY OF INFERENCE. Sample and Inferred average delay on links
1, 3 and 10 of the multicast tree in Figure 8. (a): 5 seconds window. (b): 20 seconds windows.
Background traffic has random start stop times.
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Figure 13: ACCURACY OF INFERENCE: AVERAGE DELAY. Left: d � �ms. Right: d � ���ms.
The graphs show the normalized Root Mean Square error between the estimated and sample aver-
age delay over 100 simulations.

mates of the average delays of links 1 and 10 show good agreement and a quick response to delay

variability revealing a good convergence rate of the estimator. For link 3 with a smaller average

delay, the behavior is rather poor, especially for the 5 seconds windows size.

For a selection of links, in Figure 13 we plot the Root Mean Square (RMS) normalized error

between the estimated and sample average delays calculated over 100 simulations using d � �ms

and d � ���ms. The two plots demonstrate that the error drops significantly up to 2000 probes

after which it becomes almost constant. In this example, increasing the resolution by a factor of

ten improves, although not significantly, the overall accuracy of the estimates especially for those

links that enjoy smaller delays. After 10000 probes the relative error ranges from �� to ���. The

higher values occur when link average delays are small due to the fact that for these links the same

absolute error results in a more pronounced relative error.

The persistence of systematic errors we observe in Figure 13 is due to the presence of spatial

correlation. In our simulations, a multicast probe is more likely to experience similar level of con-

gestion on consecutive links or on sibling links than is dictated by the independence assumption.

We also verified the presence of temporal correlation among successive probes on the same link

caused by consecutive probes experiencing the same congestion level at a node.

To assess the extent to which our real traffic simulations violate the model assumptions, we

computed the delay correlation between links pairs and among packets on the same link. The anal-

ysis revealed the presence of significant spatial correlations up to ��� � ��� between consecutive

links. The smallest values are observed for link 5 which always exhibits a correlation with its
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parent node that lies below 0.1. From Figure 13 we verify that, not surprisingly node 5 enjoys

the smallest relative error. We believe that these high correlations are a result of the small scale

of the simulated network. We have observed smaller correlations in large simulations as would be

expected in real networks because of the wide traffic and link diversity.

The autocorrelation function rapidly decreases and can be considered negligible for a lag larger

than 30 (approximatively 2 seconds). The presence of short-term correlation does not alter the key

property of convergence of the estimator as it suffices that the underlying processes be stationary

and ergodic (this happens for example, when recurrence conditions are satisfied). The price of

correlation, however, is that the convergence rate is slower than when delay are independent.

Now we turn our attention to the inferred distributions. For an experiment of 300 seconds

during which approximately 18000 probes were generated, we plot the complementary c.d.f. con-

ditioned on the delay being finite in Figures 14. In Figure 15 we also plot the complement c.d.f

of the node cumulative delay. (we show only the internal links as bAk�i� � b�k�i�� k � R). Here

d � �ms.

From these two sets of plots, it is striking to note the differences between the accuracy of the

estimated cumulative delay distributions bAk and the estimated link delay distributions b�k: while the

former are all very close to the actual distributions, the latter results are inaccurate in many cases.

This is explained by observing that in presence of significant correlations, the convolution among

Ak, �k, and Af�k�, used in the model, does not well capture the relationship between the actual

distributions. We verified this by convolving �k and Af�k� and comparing the result with Ak; as

expected, in the presence of strong local correlation, the results exhibit significant differences that

account for the discrepancies of the inferred distributions. Nevertheless, results should be affected

in a continuous way with small violations leading to small inaccuracies. Indeed, we have good

agreement for the inferred distributions of links 4, 5, 10 and 12 that are the nodes with smallest

spatial correlations. Unfortunately it is not easy to determine whether the correlations are strong

and therefore assess the expected accuracy of the estimates, even though pathological shapes of the

inferred distributions could provide evidence of strong local correlations1. A solution could be the

extension of the model to explicitly account for the presence of spatial correlation in the analysis.

This will be the focus of future research.

The accuracy of the inferred cumulative delay distributions, on the other hand, derives from

the fact that even in presence of significant local correlations, equation (8), which assumes inde-

1To this end, we observed that under strong spatial correlation inaccuracies of the estimator b� are often associated

to the existence of significant increasing behavior portions in the complement c.d.f. that reveals the presence of

negative inferred probabilities with possibly non negligible absolute values.
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Figure 14: Sample vs. Estimated Delay c.d.f. for selected links.
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Figure 15: Sample vs. Estimated node k cumulative delay c.d.f.
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Figure 16: TCP/UDP SIMULATION: TOPOLOGY OF FIGURE 8. ACCURACY OF THE ESTI-
MATED DISTRIBUTION. LARGEST VERTICAL ABSOLUTE DEVIATION BETWEEN ESTIMATED

AND THEORETICAL C.D.F. Minimum, median and the maximum largest absolute deviation in 100
simulations computed over all links as function of n (a) and link by link for n � ����� (b).

pendence, is still accurate. This can be explained by observing that (8) is equivalent to (4) which

consists of a convolution between Af�k� and �k; we expect the correlation between the delay ac-

crued by a probe in reaching node f�k� and the minimum delay accrued from node f�k� to reach

any receiver be rather small, especially as the tree size grows, as these delays span the entire mul-

ticast tree.

Finally in Figure 16 we plotted the minimum, median and maximum largest deviation between

inferred and theoretical c.d.f. over 100 simulations computed over all links as function of n (left)

and link by link as for n � ����� (right). Due to spatial correlation, the largest deviation level

off after the first 2000 probes with the median that stabilize at ��. The accuracy again exhibits a

negative trend as we descend the tree.

6 Conclusions and Future Work

In this paper, we introduced the use of end-to-end multicast measurements to infer network internal

delay in a logical multicast tree. Under the assumption of delay independence, we derived an

algorithm to estimate the per link discrete delay distributions and utilization from the measured

end-to-end delay distributions. We investigated the statistical properties of the estimator, and show

it to be strongly consistent and asymptotically normal.

We evaluated our estimator through simulation. Within model simulation we verified the ac-

curacy and convergence of the inferred to the actual values as predicted by our analysis. In real
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traffic simulations, we found rapid convergence, although some persistent difference to the actual

distributions because of spatial correlation.

We are extending our delay distribution analysis in several directions. First we plan to do more

extensive simulations, exploring larger topologies, different node behavior, background traffic and

probe characteristics. Moreover, we are exploring how probe delay is representative of the delay

suffered by other applications and protocols, for examples TCP.

Second, we are analyzing the effect of spatial correlation among delays and we are planning

to extend the model by directly taking into account the presence of correlation. Moreover, we

are studying the effect of the choice of the bin size on the accuracy of the results. To deal with

continuously distributed delay, we derived a continuous version of the inference algorithm we are

currently investigating.

Finally, we believe that our inference technique can shed light on the behavior and dynamics

of per link delay and so allow us to develop accurate link delay models. This will be also object of

future works.

We feel that multicast based delay inference is an effective approach to perform delay mea-

surements. The techniques developed are based on rigorous statistical analysis and, as our results

show, yield representative delay estimates for all traffic which receive the same per node behavior

of multicast probes. The approach does not depend on cooperation from networks elements and

because of bandwidth efficiency of multicast traffic is well suited to cope with the growing size of

today networks.
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A Uniqueness and Continuously Differentiability of the Inverse

The algorithm presented in Section 3.2.2 computes a solution of the system of equations (5) in the

unknown A � �Ak�i��k�V�i�f������imaxg given � � ��k�i��k�V�i�f������imaxg. By deconvolution we then

compute � � ��k�i��k�V�i�f������imaxg.

We now show that solution so computed is the unique solution of the equation � � ����, i.e.

that it is uniquely defined the inverse � � ������. To this end we rewrite the mapping � � ���� as

� � � � ���� where A � ���� is clearly a bijection. It remains to show that � is also a bijection.

To prove this consider �, A and � such that A � ���� and � � ��A�. We first show that Ak�i�,

i � �� � � � � imax is the second largest solution of (8).

In the binary case we can directly solve (8) to obtain the two solutions

Ak�i� �Ak���

�
�d��i�

�d����
�

�d��i�

�d����
� �

�
� Ak�i� �Ak���

and

Ak�i�

For the general case we have the following Lemma

Lemma 1 Let x� � x� � � � � � xm, m � �d�k� denote the real solutions of the equation

�k�i� �Ak���

�Q
d�d�k�

�
� �

�d�i��
Pi��

j�� �d�i�j�Ak�j���d���x

Ak���

�
� �

�
�

Pi��
j��Ak�j�

nQ
d�d�k� ��� �d�i� j�	� �

o
� x

nQ
d�d�k� �� � �d���	� �

o
� ��

(16)

Then x� � Ak�i�.

Proof: Substitute x � Ak�i� � yAk��� in equation (16) obtaining

�k�i� �Ak���
nQ

d�d�k� �� � �d�i� � �d���y	� �
o
�Pi��

j��Ak�j�
nQ

d�d�k� ��� �d�i� j�	� �
o
� �Ak�i� � yAk����

nQ
d�d�k� ��� �d���	� �

o
� ��

(17)

To prove the lemma we simply need to show that y � � is the second largest solution of (17).

Expanding the product in the second term we get

�k�i� �Ak���
nQ

d�d�k� ��� �d�i��� �
o
�Ak���

nP
b�B

Q
m�f�������d�k�g��� �dm�i��

bm�dm���
��bmy��bm

o
�

Pi��
j��Ak�j�

nQ
d�d�k� ��� �d�i� j��� �

o
� �Ak�i� � yAk����

nQ
d�d�k� ��� �d����� �

o
� ��

123



where b � fb�� � � � � b�d�k�g, B � f�� �g�d�k� n f�g�d�k�. Observing that the constant terms sums

to 0 (equation (5) and dividing by Ak���) this reduces to

P
b�B

Q
m�f�������d�k�g�� � �dm�i��

bm�dm���
��bmy��bm � y

nQ
d�d�k� ��� �d����� �

o
� ��

Grouping with respect to yl, we obtain

��k�i�y� �

�d�k�X
l��

yl
X

b�B�
P

bm��d�k��l

Y
m�f�������d�k�g

����dm�i��
bm�dm���

��bm�y

��
�
Y

d�d�k�

��� �d����� �

��
� � ��

The coefficients of the polynomial are all positive but the last which is negative. The proof follows

observing that since ��k�i��� � �, ���k�i��� � � and ����k�i�y� � �, y � �, there is one and only one

solution of (17) greater than zero.

From the uniqueness of the solution of (6) for canonical delay trees and by induction on i, it

then follows that � is a bijection; thus, the inverse is uniquely defined.

To prove that the inverse is continuously differentiable we proceed as follows. Denote �k�i���A�,

k � U , i � �� � � � � imax, the left hand side of (8). Define the functionH���A� � ��k�j���A��k�U�j�������imax.

H���A� � � is the system of equations to be solved to computeA given �. DenoteA��� the unique

solution to H���A���� � �. The proof that the inverse is continuously differentiable amounts to

show that so is A � ������ � A��� (as � and its inverse clearly are). For canonical trees,

Ak��� � �, k � U , and therefore H is continuously differentiable. Then, by the Implicit Function

Theorem, so is A��� provided that the determinant of the Jacobian �H
�A

��
A�A���

is different from

zero. To see this, observe that
��k� �i� ���A�

�Ak� �i�

� � if k� �� k� or i� � i�; hence the Jacobian matrix is

always triangular. The diagonal elements are ��k�i���A�

�Ak�i

���
A�A���

� ���k�i���	Ak��� � �.

B The Continuous Model: Delay Distribution Analysis

In this Appendix we formulate the delay analysis for continuous delay distributions, rather than

for the discrete distributions. We assume now that Dk � R� � f�g and the distribution to be

absolutely continuous w.r.t Lebesgue measure on R� with density 
k , together with an atom at

� of mass 
k��� � � �
R�
� 
k�x�dx, the probability that a packet is lost traversing the link

terminating at k. (For simplicity of notation, here we do not consider the atom in 0 representing

the probability that a probe experiences minimum delay.) Ak is defined similarly for the source to

root delays Yk . Similar to the discrete case we define 	k�x� as the event fminj�R�k� Yj � xg and

�k�x� � P�	k�x��, k � U . Finally, let �k�x� � P�minj�R�k� Yj � Yf�k� � x�, k � U . From the
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above definitions, the following relations hold:

Ak�x� �

Z x

�

�k�y�Af�k��x� y�dy� k � U�

where we set A��x� � ��x�,

�k�x� �
R x

� �k�y����
Q

d�d�k� ��� �d�x� y���dy� k � U (18)

and

�k�x� �
R x

�
Ak�y����

Q
d�d�k� �� � �d�x� y���dy� k � U� (19)

which is the continuous version of (5). Empty products are assumed to be equal to zero.

The above equation can be rewritten in more convenient form using the Laplace transform

�k�s� � Ak�s�

�
�

s
� �d�d�k�

�
�

s
�

�d�s�

Ak�s�

��
k � U (20)

or
�

s
�

�k�s�

Ak�s�
� �d�d�k�

�
�

s
�

�d�s�

Ak�s�

�
� k � U (21)

where, f�s� �
R
�

� f�x�e�sxdx is the Laplace transform of f�x�, � is the convolution operator in

the domain s, f�s� � g�s� �
R a�i�

a�i�
f�p�g�s � p�dp, and �d�s� �

�d�s�
Ak�s�

.

Given �k�s�, k � U , (21) represents a system of �U independent equations in the unknown

Ak�s�, k � U . �k�s� can then be computed by the quotients

�k�s� �
Ak�s�

Af�k��s�
� k � U�

Solving equation (21) is not trivial especially because of the convolution in the right hand side

which in general can be computed only numerically. Furthermore, we have not been able yet

to establish whether the solution is unique. The inversion of the Laplace transform poses other

challenges. It is well known, indeed (see for example [1]), that the Laplace inverse transform is an

unbounded operator. In other words arbitrary small changes in the transform will produce arbitrary

large changes in the original function. Therefore it may not be easy to control the accuracy of the

results obtained with such an approach. All these issues will be subject of further investigation.

The estimator b��s� can be computed in the same manner from the estimates b��s� we obtain from

the measurements. (21) can be written as a fixed point equation for the Ak�s�; this suggests the

possible use of contraction mapping theorem in order to establish existence and uniqueness of

solutions.
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C Proof of Theorem 4

The proof proceeds by a number of subsidiary results.

C.1 Limit Behavior of A, � and �

As k�k � �,

(i)

Ak�i� �

�
�� sk��� �O�k�k�� i � �P��k�

l�� �f l�k��i� �O�k�k�� i � �
(22)

(ii)

�� �k�i� �
X
j�i

�k�i� �O�k�k�� (23)

(iii)

�k�i� � �� sk�i� �O�k�k�� (24)

where

sk�i� �

��k�X
l��

X
j�i

�f l�k��j� (25)

The relation (i) is clear for i � � by expanding Ak��� �
Q��k�

l�� �k���; for i � �, it follows by

an inductive argument on k and i: it is true for k � � and i � �; if it is true for j � k and for

� � i� � i� �, then

Ak�i� �
iX

j��

Af�k��j��k�i�j� � Af�k�����k�i��Af�k��l��k����O�k�k
�� � �k�i��

��f�k��X

l��

�f l�k��i��O�k�k
���

Also (ii) follows by an inductive argument. Observe from (3) that if (ii) hold for all j in d�k�

and i� � i then � � �k�i� � � �
Pi

j�� �k�j� � O�k�k��. Since �k�i� �
Pi

j�� �k�j� for k � R,

i � �� � � � � imax, (ii) holds for all k and i. (iii) then follows expanding �k�i� �
Pi

j��Ak�j��� �Q
d�d�k� �d�i � j�� (Observe that the terms within square bracket are always of the form � �

O�k�k�).

C.2 Limit Behavior of the Covariance Matrix �

As k�k � �,

Cov�b�k��i���b�k��i��� � sk��k��max�i�� i��� �O�k�k�� (26)

where k� � k� denote the minimal common ancestor of k� and k� with respect to �.
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To see this, we writeCov�b�k��i���b�k��i��� � E�b�k��i��b�k��i����E�b�k��i���E�b�k��i���. By defini-

tion, E�b�k��i��� � �k��i�� and E�b�k��i��b�k��i��� � P�minm�R�k�� Ym � i�q �minm�R�k�� Ym � i�q�
2. We have three cases:

(i) k� � k�, i� � i�.

In this case fminm�R�k�� Ym � i�qg � fminm�R�k�� Ym � i�qg and E�b�k��i��b�k��i��� � b�k��i��.

Thus,

Cov�b�k��i���b�k��i��� � ��� �k��i����k��i�� � sk��i�� �O�k � k���

(26) follows as i� � max�i�� i�� and k� � k� � k�.

(ii) k� � k�, i� � i�.

WriteP�minm�R�k�� Ym � i�q�minm�R�k�� Ym � i�q� � P�minm�R�k�� Ym � i�q��P�minm�R�k�� Ym �

i�q��P�minm�R�k�� Ym � i�q�minm�R�k�� Ym � i�q�. The first two terms are �k��i�� and �k��i��.

Then, as for k�k 	 �

E�b�k��i���E�b�k��i��� � �� sk��i��� sk��i�� �O�k � k��� (27)

it readily follows that as k�k 	 �

Cov�b�k��i���b�k��i��� � �� P� min
m�R�k��

Ym � i�q � min
m�R�k��

Ym � i�q� �O�k�k��� (28)

To compute P�minm�R�k�� Ym � i�q�minm�R�k�� Ym � i�q� we need to define some additional

quantities. Denote W � fw�� � � � � wlg 
 V a set of nodes that induces a partition on R, i.e., W is

such that �lh��R�wh� � R and R�wh� � R�wh�� � �, � � h� h� � l, h �� h�. Associate to W a set

of delay values � � fj�� � � � � jlg. The quantities we introduce below are a generalization of the

� and �, where we use for different sets of receivers, namely R�w��� � � � � R�wl�, different delays,

j�� � � � � jl. For k 
 V , define

�k�W ��� � P��lh�� min
w�R�wh��R�k�

Ym � Yf�k� � ihq�� (29)

Then, �k�W obey to the recursion

�k�W ��� �

maxjk�WX
j��

�k�j�

�
�� �

Y
d�d�k�

�� �d�W ��� j�

�
� � k 
 U nR (30)

�k�W ��� � �k�jk�W �� k 
 R� (31)

2Since probes are assumed independent, it suffices to evaluate all random quantities for n � � probes.
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where �� j � fj�� j� � � � � jl� jg and jk�W � maxl��R�k��R�w
l�
���� jl� . Probabilities with negative

index are assumed to be equal to zero.

For a given node k, define now

�k�W ��� � P��lh�� min
w�R�wh��R�k�

Ym � jhq�� (32)

The following, which can be regarded as a generalization of (5), holds

�k�W ��� �

jk�WX
j��

Ak�j�

�
��� Y

d�d�k�

�� �d�W ��� j�

�
� � k � U nR (33)

�k�W ��� �

jk�WX
j��

Ak�j�� k � R� (34)

For k�k � �, it is easy to verify that �k�W ��� behaves as �k�jk�W � (the terms within square

bracket are always of the form ��O�k�k�). In other words, �k�W ��� � �� sk�jk�W ��O�k�k��.

With the definitions above, we can now write

P� min
m�R�k��

Ym � i�q � min
m�R�k��

Ym � i�q� � �k��W ��� (35)

where W � fw�� � � � � wlg, w� � k�, and � � fj�� � � � � jlg, with j� � i� and jl� � i�, 	 � l� � l.

Then, as �k�k���,

P� min
m�R�k��

Ym � i�q � min
m�R�k��

Ym � i�q� � �� sk��i�� �O�k�k��� (36)

Thus,

Cov�b�k��i���b�k��i��� � sk��i�� �O�k�k��� (37)

(26) follows as k� � k� � k� and i� � max�i�� i��.

(iii) k� � k� � k�� k�.

We proceed as for (ii). In this case, we can write

P� min
m�R�k��

Ym � i�q � min
m�R�k��

Ym � i�q� � �k��k��W ��� (38)

where W � fw�� � � � � wlg, w� � k� and w� � k�, and � � fj�� � � � � jlg, with j� � i�, j� � i� and

jl� � ��, 
 � l� � l (for (38) to hold, we need to set jl to -1, l �� �� 	, or any other negative number,

to insure that all events regarding receivers different from R�k�� and R�k�� have probability zero).

Thus, as k�k ��,

P� min
m�R�k��

Ym � i�q � min
m�R�k��

Ym � i�q� � �� sk��k��max�i�� i��� �O�k�k��� (39)
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Thus,

Cov�b�k��i���b�k��i��� � sk��k��max�i�� i��� �O�k�k��� (40)

C.3 Limit Behavior of the JacobianD���

As k�k � �,

D��� � B �D �O�k�k� where Dk�k� �

����
���

� k� � k�

�� k� � f�k��

� otherwise

� (41)

where B is a imax� �� imax � � matrix with entries Bii� � �ii� � �ii���, � denote the Knonecker

product and �ii� � � if i � i� and 0 otherwise.

To establish this, we first show that its inverseD����� whose elements are �D�������k��i���k��i�� �

��k��i�����k��i�� has the following form for k�k � �,

D����� � L � �D �O�k�k� where �Dk�k� �

�
� k� � k�

� otherwise
� (42)

where L is a unit lower triangular matrix, i.e., Lii� � �fi�i�g. To this end we rewrite �k�i� asPi

j��Ak�j����
Q

d�d�k���� �d�i� j��	. We have the following three cases:

(i) k� � k�, i� � i�.

Let l� be such that f l��k�� � k�. Then, for k�k � �

��k��i��

��k��i��
�

i�X
j�i�

�Ak��j�

�k��i��
���

Y
d�d�k��

��� �d�i� � j��	 (43)

�
i�X

j�i�

�

�k�

�
B� X
P��k��

l�� jl�j

��k��Y
l��

�f l�k���jl�

�
CA ���

Y
d�d�k��

��� �d�i� � j��	 (44)

�

��k��Y
l���l��l�

�f l�k��������
Y

d�d�k��

��� �d�i� � i���	 �

i�X
j�i���

X
P��k��

l�� jl�j�j
l�
�i�

��k��Y
l���l��l�

�f l�k���jl����
Y

d�d�k��

�� � �d�i� � j��	 (45)

� � �O�k�k� (46)
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as the first term of (45) goes to 1 while the second goes to � because in any product there is at least

one l such that jl � �.

(ii) k� � k�, i� � i�.

Let d� be such that there exists an l such that fl�k�� � d�. Then,

��k��i��

��k��i��
�

i��i�X

j��

Ak��j�
����

Q
d�d�k��

��� �d�i� � j���

�k��i��
(47)

�

i��i�X

j��

Ak��j�
��d��i� � j�

�k��i��
���

Y

d�d�k���d��d�

��� �d�i� � j��� (48)

� O�k�k� (49)

as each product goes to 0, as k�k � �.

(iii) i� � i�.

In this last case, �k��i�� does not depend on �k��i�� and the derivative is 0.

Since matrix inversion is continuous in an open neighborhood on non-singular matrices, then

(41) follows since D and �D are inverses (see Section 10 of [4]) as also are L and B (trivial) and

since for invertible square matrices F and G, �F �G��� � F�� �G��.

C.4 Proof

From Theorem 3, (26), (41) and continuity of finite dimensional matrix products, we have for

k�k � � that

��k��i���k��i�� �
X

k�

�
�k�

�
�i�
�
�i�
�

D�k��i���k�

�
�i�
�
�sk�

�
�k�

�
�max�i��� i

�
���D�k��i���k�

�
�i�
�
� �O�k�k��� (50)

It remains to evaluate
X

k�

�
�k�

�
�i�
�
�i�
�

D�k��i���k�

�
�i�
�
�sk�

�
�k�

�
�max�i��� i

�

���D�k��i���k�

�
�i�
�
� �

X

i�
�
�i�
�

Bi�i
�

�
�sk��k��max�i��� i

�

���� sf�k���k��max�i��� i
�

����

sk��f�k���max�i��� i
�

��� � sf�k���f�k���max�i��� i
�

����Bi�i��
(51)

When k� �� k�, then (51) yields 0. Indeed, if k� � k�, k� � k� � f�k�� � k� � k�, while

k� � f�k�� � f�k�� � f�k�� � f�k��, and hence (51) is zero. Similar for k� � k�. In all other
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cases, k� � k� � k�� k� and so k� � k� � f�k�� � k� � k� � f�k�� � f�k�� � f�k�� � f�k�� and

(51) is again zero.

When k� � k�, k� � k� � k�, k� � f�k�� � f�k�� � k� � f�k�� � f�k�� � f�k�� and (51)

reduces to X
i
�

�
�i�
�

Bi�i
�

�
�sk��max�i��� i

�

���� sf�k���max�i��� i
�

����Bi�i
�

�
(52)

Substituting Bij � �ij � �ij�� in (52), it is easy to verify the following:

X
i�
�
�i�
�

Bi�i
�

�
�sk��max�i��� i

�

���� sf�k���max�i��� i
�

����Bi�i
�

�
�

������
�����

P
j�� �k��j� i� � i� � �

�k��i�� i� �� �� i� � �

�k��i�� i� � �� i� �� �

� i� �� i�� i�� i� �� �
(53)
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Multicast Inference of Packet Delay Variance at
Interior Network Links
N.G. Duffield� F. Lo Presti���

�AT&T Labs–Research �University of Massachusetts

AbstractóEnd-to-end measurement is a common tool for
network performance diagnosis, primarily because it can re-
ect user experience and typically requires minimal support
from intervening network elements. Challenges in this ap-
proach are (i) to identify the locale of performance degrada-
tion; and (ii) to perform measurements in a scalable man-
ner for large and complex networks. In this paper we show
how end-to-end delay measurements of multicast traf c can
be used to estimate packet delay variance on each link of a
logical multicast tree. The method does not depend on coop-
eration from intervening network elements; multicast prob-
ing is bandwidth ef cient. We establish desirable statistical
properties of the estimator, namely consistency and asymp-
totic normality. We evaluate the approach through model
based and network simulations. The approach extends to
the estimation of higher order moments of the link delay dis-
tribution.

KeywordsóEnd-to-end measurement, queueing delay, es-
timation theory, multicast trees, network tomography

I. INTRODUCTION

A. Background and Motivation.

Monitoring the performance of large communications
networks and diagnosing the causes of its degradation is
a challenging problem. There are two broad approaches
to performance diagnosis. In the internal approach, direct
measurements are made at or between network elements,
e.g. of packet loss or delay. This approach has a number
of potential limitations: it may not be available for gen-
eral users; coverage may not span paths of interest; mea-
surements may be disabled during period of high load; is-
sues of scale gathering and correlating the measurements
in large networks; how to compose per hop measurements
to and end-to-end view.

This motivates external approaches, diagnosing the net-
work through end-to-end measurements, without necessar-
ily assuming the cooperation of network elements on the
path. There has been much recent experimental work to
understand the phenomenology of end-to-end performance

This work was sponsored in part by the DARPA and the Air Force
Research Laboratory under agreement F30602-98-2-0238.

Address: AT&T Labs–Research, 180 Park Avenue, Florham Park, NJ
07932, USA; E-mail: fduffield,loprestig@research.att.com

(e.g., see [1], [2], [8], [21], [16], [23], [24], [26]); several
measurement infrastructure projects are in development
(including CAIDA [6], Felix [10], IPMA [12], NIMI [15],
Surveyor [30]) with the aim to collect and analyze end-to-
end measurements across a mesh of paths between a num-
ber of hosts. Standard diagnostic tools for IP networks,
ping and traceroute report roundtrip loss and delay.
A recent refinement of this approach, pathchar [13], es-
timates hop-by-hop link capacities, packet delay and loss
rates. pathchar is still under evaluation; initial expe-
rience indicates many packets are required for inference
leading to either high load of measurement traffic or long
measurement intervals, although adaptive approaches can
reduce this [9]. More broadly, measurement approaches
based on Time To Live (TTL) expiry require the coop-
eration of network elements in returning Internet Control
Message Protocol (ICMP) messages. In future, encapsula-
tion may hide TTL from higher layers that would see just
a single hop between tunnel endpoints. Finally, the suc-
cess of active measurement approaches to performance di-
agnosis may itself cause increased congestion if intensive
probing techniques are widely adopted.

In response to some of these concerns, a multicast-based
approach to active measurement has been proposed re-
cently in [3], [4]. The idea is that correlation in perfor-
mance seen on intersecting end-to-end paths can be used to
draw inferences about the performance characteristics of
their common portion, without cooperation from the net-
work. Multicast traffic is well suited for this since a given
packet only occurs once per link in the (logical) multi-
cast tree. Characteristics such as loss and end-to-end delay
seen at different endpoints are highly correlated. Another
advantage is in scalability. Suppose packets are exchanged
on a mesh of paths between a collection ofN measurement
hosts stationed in a network. With unicast the probe load
on the network may grow proportionally to N � in some
links of the network. with multicast the load grows pro-
portionally only toN .

B. Contribution

In this paper we describe a method to infer the variance
of internal link delays from measured end-to-end delays
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Fig. 1. LEFT: Two leaf tree. RIGHT: m-leaf tree.

of multicast probe packets. It is assumed that the link de-
lays are independent random variables, both spatially (i.e.
between different links) and temporally (i.e. between dif-
ferent packets); later we discuss the impact of violation
of these assumptions. The method rests on (generaliza-
tions of) the following observation. Consider the logical
multicast topology of Figure 1(left), in which packets are
multicast from the root � to receivers � and �. Di is the
random delay on link i, and the source-to-leaf delays from
the root � to the leaf nodes � and � are X� � Dk�D� and
X� � Dk � D� respectively. Then a simple calculation
shows that, under the independence assumption,

Var�Dk� � Cov�X�� X��� (1)

i.e. we express the variance of an internal link delay in
terms of the covariance of the source-to-leaf delays. We
can form an unbiased estimate of Cov�X�� X�� directly
from end-to-end measurements; this constitutes an unbi-
ased estimate of Var�Dk�. The same method extends to
higher order moments; when the node k had branching ra-
tio m, we are able to estimate the first m moments of Dk;
see Figure 1(right). We specify the delay model in Sec-
tion II and describe the basic moment estimators in Sec-
tion III.

Here we focus on estimation of the delay variance, ei-
ther on individual links, or from the root to a given node.
In Section IV we show how the above scheme can be used
to obtain multiple unbiased estimates of the variance of the
delay from the root to a given node k, one estimator for ev-
ery pair of leaf nodes descended through different children
of k. The estimates are consistent, i.e., they converge in
probability to the true variance as the number of probes
grows to infinity. Any convex combination of these esti-
mators shares these properties; although the rate of con-
vergence will be different in each case. This rate can be
used to distinguish between the estimators. We show how
to choose the weights in order to obtain the combination

with the fastest asymptotic rate of convergence.
Packet loss reduces the number of packets available for

delay estimation, hence increasing estimator variance. In
Section V we quantify this for an estimation scheme that
makes maximal use of information from surviving packets,
using all packets reaching a given node pair for which a
covariance estimator is calculated.

The model used here also assumes temporal indepen-
dence, i.e., that delays between successive probe packets at
a given node are not dependent. This can be arranged for
by making the interprobe times greater than the queueing
timescale. However, for a wide class of temporally depen-
dent delay processes–we require only ergodicity–the con-
sistency of the estimators is unaffected, i.e., they still con-
verge to the true values as the number of probes grows to
infinity. However, the rate of convergence may be slower.

In Section VI we report two types of simulation (i)
model simulations with packet delay chosen pseudo-
randomly according to a given distribution; and (ii) ns [22]
simulations that represented both the probe traffic mixed
in with background traffic of TCP and UDP sessions and
delay occurred as result of queueing against background
traffic, and loss due to buffer overflow. The model simula-
tions allow us to compare the theoretical prediction with a
model in a controlled manner. We verify the accuracy of
the delay variance estimator. The variance of the variance
estimators over many simulation runs is conformant with
the model; this verifies the benefit in accuracy of using the
minimum variance estimator. The ns simulation allow us
to investigate the performance of the inference method in a
more realistic setting in which the independence assump-
tion may not be exactly satisfied. We find that dependence
between delays in different links is smaller when buffers
are larger, and that inference is correspondingly more ac-
curate. In a 12 node topology we find the typical error in
estimation is about 23%, based on a sample size of 1,000
probes. We believe this is sufficiently accurate to distin-
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guish links with high delay variance. As far as we are
aware there are no studies in deployed networks that mea-
sure delay correlation between different nodes. However,
we believe that large and long-lasting spatial dependence
is unlikely in a real network such as the Internet because
of its traffic and link diversity.

C. Implementation Requirements

Since the data for delay inference comprises one-way
packet delays, the primary requirement is the deployment
of measurement hosts with synchronized clocks. (Ac-
tually, since delay covariances are invariant under time-
shifts, the absolute times need not be synchronized, pro-
vided that the rates are identical). Using Global Position-
ing System (GPS) timing it is possible to make one-way
delay measurements accurate to within tens of microsec-
onds or better. GPS is currently used or planned in sev-
eral of the measurement infrastructures mentioned earlier.
The Network Time Protocol (NTP) [17] is more widely
deployed, but provides accuracy in only the order a few
tens of milliseconds, a resolution at least as coarse as the
queueing delays in practice. An alternative approach to
calibration and synchronization of clocks has been devel-
oped in [25], [27], [18].

Another requirement is to know the multicast topol-
ogy. There is a multicast-based measurement tool,
mtrace [19], already in use in the Internet. mtrace re-
ports the route from a multicast source to a receiver, along
with other information about that path such as per-hop
loss and rate. Presently it does not support delay mea-
surements. A potential drawback for larger topologies is
that mtrace does not scale to large numbers of receivers
as it needs to run once for each receiver to cover the en-
tire multicast tree. In addition, mtrace relies on multi-
cast routers responding to explicit measurement queries;
the feature that can be administratively disabled. An al-
ternative approach that is closely related to the work on
multicast-based loss inference [3], [4] is to infer the logical
multicast topology directly from measured probe statistics;
see [5], [28]. The delay variance estimates of the present
paper can also be used to infer topology. This method does
not require cooperation from the network.

D. Use of Delay Variance Estimate

Although prior work has characterized end-to-end de-
lays [1], [21], [24], to the best of our knowledge there is
no generally accepted model for per link delays in real net-
works. Without a model it is difficult to map a given in-
ferred value of the link delay variance to a specific value
of a quality metric, such as the probability of queueing de-
lay exceeding a given value. Nevertheless, we believe that

knowledge of the per link delay variance will be increas-
ingly useful for the following reasons:

Model Development. The mapping problem just described
will become easier upon development of delay models.
We expect these to arise from two sources. The first is
the development of measurement infrastructure projects
in which selected links are instrumented for one-way de-
lay measurements. The second is the development of
multicast-based estimators for the link delay distribution
from end-to-end measurements, using a more computa-
tionally intensive technique proposed in a companion pa-
per [14]. We anticipate that this will allow the develop-
ment of link delay distribution models, with the distribu-
tion inferred from network measurements.
Ordering. Identification of links with highest delay vari-
ance suggests candidate for links on which performance is
degraded for delay sensitive applications.
Delay and Delay Variation. The variance of the packet
delay (on a link or path) can be used to estimate or bound
the variance of the interpacket delay variation. Let Di be
the delay encountered by packet i on a given link. The
interpacket delay variation (or jitter) between packets i and
i�� on the link is J i � Di��

�Di; a similar notion applies
to end to end delay. Observe

Var�J i� � Var�Di��Var�Di�����Cov�Di� Di���� (2)

Assuming D��� to be stationary, the first two terms on the
RHS of (2) are equal, while under the assumption of tem-
poral independence the last term is zero, and so Var�J i� �
�Var�Di�. Measurements of end-to-end delays in the In-
ternet [1] show that end-to-end delays successive packets
are only slightly dependent when the interpacket time is
longer than the typical queueing timescales. Stronger de-
pendence is found at shorter timescales: successive pack-
ets are more likely to queue together. With positive corre-
lation between successive probe delays Cov�Di� Di��� �
�; in this case Var�J i� is bounded above by �Var�Di�, a
quantity that we can estimate from end-to-end measure-
ments.
Topology Inference. If the logical multicast topology is not
initially known, it can be inferred from delay variances.
This technique uses the estimated variance of the cumula-
tive delay from the source to a given node. Consequently
we shall be interested here in the estimation of cumulative
delay variance as well as link delay variance.

II. THE TREE AND DELAY MODELS

We identify the physical multicast tree as comprising ac-
tual network elements (the nodes) and the communication
links than join them. The logical multicast tree comprises
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the branch points of the physical tree, and the logical links
between them. The logical links comprise one or more
physical links. Thus each node in the logical tree, except
the leaf nodes and possibly the root, must have 2 or more
children. We can construct the logical tree from the phys-
ical tree by deleting all links with one child and adjust-
ing the links accordingly by directly joining its parent and
child.

Let T � �V� L� denote a logical multicast tree with
nodes V and links L. We identify one node, the root �,
with the source of probes, and R � V will denote the set
of leaf nodes (identified as the set of receivers). The set of
children of node j � V is denoted by d�j�. Each node, k,
apart from the root has a parent f�k� such that �j� k� � L.
Define recursively the compositions f n � f � fn�� with
f� � f . Nodes are said to be siblings if they have the
same parent. If k � fm�j� for some m � N we say that j
is descended for k (or equivalently that k is an ancestor of
j) and write the corresponding partial order in V as j � k.
i � j will denote the minimal common ancestor of i and j
in the �-ordering.

We associate each node k a random variable Dk taking
values in the extended positive real line R � R� � f�g.
By conventionD� � �. Dk is the random delay that would
be encountered by a packet attempting to traverse the link
�f�k�� k� � L. The value Dk � � indicates the packet is
lost on the link. The delay experienced on the path from
the root � to a node k is Xk �

P
j�k Dj . We assume

that the Dk are independent. Let �k � P�Dk � ��, the
probability of successful transmission over link k.

III. NON-PARAMETRIC ESTIMATION OF DELAY

DISTRIBUTION MOMENTS

In this section we present a class of non-parametric es-
timators of the delay distribution. We assume initially that
all delays are finite: P�Dk � �� � �. Consider first a
logical subtree formed by the root �, and a non-leaf node
k with two descendents � and � that are leaf nodes; see
Figure 1(left). By writing Xi � Xk � �Xi � Xk� in the
expression for Cov�X�� X��, expanding using the bilinear-
ity of the covariance operator Cov�	� 	�, and using the mu-
tual independence of the links delays Xk� X� � Xk and
X� �Xk, we obtain

Cov�X�� X�� � Var�Xk�� (3)

Hence any unbiased estimator of Cov�X�� X�� is also

an unbiased estimator of Var�Xk�. Let X�i�
� � X

�i�
� , i �

�� �� � � �n be measured end-to-end delays between the
root � and leaf nodes � and � respectively. Abbreviate
Cov�Xj � Xk� by sjk and write skk as sk . We estimate sk

by a uniformly minimum variance unbiased estimator of
s��, namely bs�� where

bsij � �

n � �

�� nX
m��

X
�m�
i X

�m�
j �

�

n

nX
m�m���

X
�m�
i X

�m��
j

�A
(4)

At a node with branching ratio m we are able to es-
timate the first m moments of the delay on the shared
portion of the path from the root; see Figure 1(right).
The cumulant generating function of the m leaf delays
X � �X�� � � �Xm� is defined for � � Rm by

���	X� � logE�exp�
mX
i��

�iXi��� (5)

The cumulants are defined by partial differentiation w.r.t.
the components �i (when derivatives exist): for indices
j�� � � � � jm �Z� set

Kj������jm�X� �

�
mY
i��

�ji

��
ji
i

�
���	X�

���
�i��

(6)

The first and second cumulants K� and K� of a single
random variable are its mean and variance respectively.
Knowing the cumulants of a set of random variables is
equivalent to knowing their joint distribution. The cumu-
lants of D� are related to those of the Xi as follows. Set
� � ��� � � � � �� � Rm.

Theorem 1: K��X� � Km�Xk�. Hence any unbi-
ased estimator of K��X� is also an unbiased estimator of
Km�Xk�.
Proof: Observe K��X�� � � � � Xm� � K��X� �
Xk� � � � � Xm � Xk� � K���Xk� � Km�Xk�. The first
equality is because K is affine in each of its arguments,
the second because the cumulant of a set of independent
random variables is zero.

IV. DELAY VARIANCE ESTIMATION ON GENERAL

TREES

In a general tree let Q�k� � ffi� jg � R j i � j �
k� g be the set of distinct pairs of leaf-nodes whose �-
least common ancestor is k. Any convex combinationP

fi�jg�Q�k��ijbsij (i.e. with the �ij 
 � and summing
to 1) is also an unbiased estimator of sk. An example the
uniform estimator

�


Q�k�

X
fi�jg�Q�i�j�

bsij � (7)

One potential disadvantage with the uniform estimator is
that high variance of one of the summands may lead to
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high estimator variance overall. This motivates choosing
convex combinations that are functions of the end-to-end
delays themselves in order to reduce variance. In this sec-
tion we shall assume that all delays a finite with bounded
fourth moments. We shall relax the finiteness assumption
in Section V.

We formalize the notion of (possibly random) convex
combinations of bsij through a covariance aggregator. For
S � R let Fn�S� denote the �-algebra generated by the
end-to-end delays �Xk�k�S (i.e. the set of events that
can be determined from knowing �Xk�k�S). A covariance
aggregator � is sequence ���n��n�N of random vectors
f�ij�n� � fi� jg � Q�k�� k � V nRgwith � � �ij�n� � �
and

P
fi�jg�Q�k��ij�n� � � for each k � V n R. We as-

sume each �n to be Fn�R�-measurable, i.e., it is a func-
tion of the measured delays of the first n probes. We will
usually suppress the explicit dependence on the number
of probes n. Let bs � fbsij�n� � fi� jg � Q�k�� k �
V nRg be a family of estimators, bsij�n� being an Fn�i� j�-
measurable unbiased estimator of Var�Xi�j�. Then we es-
timate Var�Xk� by

Vk��� bs� �
X

fi�jg�Q�k�

�ijbsij (8)

A covariance aggregator is called deterministic if it does
not depend on the X �i�. We denote the set of such ag-
gregators with indices in Q�k� by Dk. An example is the
uniform aggregator that was used in the uniform estimator
(7): �ij � ��Q�i� j����. Define the covariance matrix

C�ij����m� � Cov � ZiZj � Z�Zm � � (9)

where Zi � Xi � E�Xi	. We will use C�k� ��
C�ij����m�

�
�ij����m��Q�k�

to denote the matrix obtained by

letting the indices �ij� and ��m� in (9) run over Q�k�; this
is a submatrix of the matrix C��k� obtained by taking the
indices unrestricted over the setQ��k� of binary subsets of
R�k�.

A. Minimum Variance Estimation for Cumulative Delays

In the next theorem we characterize the asymptotic dis-
tribution of the bsij as n � �, and give a form for the
estimator Vk��� bs� of minimum cumulative variance.

Theorem 2: (i) For each k � V n R the random vari-
ables fpn �bsij � sk� j fi� jg � Q�k�g converge in
distribution as n � � to a multivariate Gaussian ran-
dom variable with mean 0 and covariance matrix C�k�.
Hence the bsij are consistent estimators of sk and so is
V ��� bs�. For any deterministic covariance aggregator �,p
n�Vk��� bs� � sk� converges in distribution as n � �

to a Gaussian random variable of mean zero and variance
� � C�k� � �.
(ii) The minimal asymptotic variance inf��Dk

� �C�k� ��
is achieved when

�ij � ��ij�C�k�� ��
�
C�k��� � ��

�ij�

�
� � C�k��� � �

(10)
where C�k��� denotes the inverse matrix of C�k� and
��ij� � �, fi� jg � Q�k�. The corresponding asymptotic

variance of the variance estimator is
�
� � C�k��� � ����.

Proof: (i) The proof follows from standard results in mul-
tivariate analysis; convergence to the stated Gaussian ran-
dom variable follows by Corollary 1.2.18 in [20]

(ii) Since the �ij sum to �, the proof follows by consid-
ering the constrained minimization of � �C�k� ���
k� ��
with Lagrange multiplier k. As a covariance matrix, C�k�
is positive definite and hence invertible; minimization of
the convex function of � takes place at the the stationary
point � � kC�k��� � �. This yields ���C�k�� upon nor-
malization. The corresponding minimal asymptotic vari-
ance is ���C�k�� �C�k� ����C�k�� �

�
� � C�k��� � ����.

Operationally, the coefficients �ij of the minimum vari-
ance estimator Vk����C�k���bs� of Theorem 2 are to be
calculated from an estimate of the covariance matrixC�k�.

Let Z�m�
i � X

�m�
i � �

n

Pn
m��X

�m�
i . Let bC�k� denote the

empirical covariance matrix with entries

bC�k��ij���i�j�� �
n�

�n� ���

�
nX

m��

Z
�m�
i Z

�m�
j Z

�m�
i�

Z
�m�
j�

� �

n

nX
m��

Z
�m�
i Z

�m�
j

nX
m��

Z
�m�
i�

Z
�m�
j�

�
(11)

bC�k� is an unbiased estimator of C�k�. Estimating
���C�k�� by��� bC�k�� and sk byVk���� bC�� bs� potentially
introduces bias and increases variance in the estimation
of the sk . However, the following Theorem shows that
it is consistent and has the same asymptotic variance as
Vk��

��C��bs�.
Theorem 3: Vk���� bC�k���bs� is a consistent estimator

of sk.
p
n�Vk��

�� bC�k��bs�� sk� converges in distribution
to a Gaussian random variable of mean zero and variance�
� � C�k��� � ����.

Proof: Clearly bC�k� converges almost surely to C�k� as
n � �. Since matrix inversion is continuous on the set
of strictly positive definite matrices, ��� bC�k�� converges
almost surely (to ���C�k��); since each bsij converges to
sij � sk , Vk���� bC�k���bs� is consistent.

By the �-method (see e.g. [29]),
p
n �V ���� bC�k���bs��

sk� converges to a Gaussian random variable with mean �

136



6

and variance � �C��k� � �, where for ���m� � Q��k�,

��m �
�

�s�m

X

fi�jg�Q�k�

��ij�C�k��sij� (12)

Differentiating,

��m � ���m�C�k���Q�k��f��mg�
�
X

fi�jg�Q�k�

sij
�

�s�m
��ij�C�k��� (13)

where �Q�k� denotes the indicator function of the setQ�k�.
But sij � si�j � sk for fi� jg in Q�k� and so is constant
in the sum. Since the ��ij sum to 1, the sum in (13) is zero.
Hence � � C��k� � � � ���C�k�� � C�k� � ���C�k��.

B. Minimum Variance Estimation for Link Delays

We can estimate the link delay variance as the difference
of two cumulative variances since

Var�Xk� � Var�Xf�k��Dk� � Var�Xf�k�� � Var�Dk��
(14)

by the independence assumption on link delays. An un-
biased estimator of rk �� Var�Dk� is Vk����C�k���bs� �
Vf�k���

��C�f�k����bs�. We now show that joint optimiza-
tion of the aggregators in Vk and Vf�k� will result in an
estimator of lower variance.

Given a pair � � ���k�� ��f�k��� � Dk � Df�k� of
deterministic covariance aggregators with indices in Q�k�
and Q�f�k�� respectively, we can form a unbiased esti-
mate of rk as

Wk��� bs� �� Vk���k��bs�� Vf�k����f�k���bs� (15)

LetC ��k� denote the�Q�k���Q�f�k�� dimensional ma-
trix written in block form

C ��k� �

�
C�k� C�k� f�k��

C�k� f�k��T C�f�k��

�
� (16)

where C�k� f�k�� is the �Q�k� � �Q�f�k�� matrix
of covariances

�
C�ij����m�

�
�ij��Q�k����m��Q�f�k��

. Then
statements analogous to Theorem 2(ii) follow straight-
forwardly, using parallel arguments. In particularp
n�Wk��� bs�� rk� converges to a Gaussian random vari-

able of mean 0 and variance � � C��k���� and the min-
imum over deterministic aggregators of the asymptotic
variance takes the value �c�� c���c����c�c��c��� where
c� � �k �C�k��� � �k, c� � �f�k� �C�f�k���� � �f�k� and
c� � �f�k� � C�k� f�k���� � �k . (Here the subscripts on
�k � �f�k� distinguish the subspaces in which these vectors
live).

C. Criteria for Assessing Inference Reliability

In sections IV-A and IV-B we derived expressions for
the variances of estimates of the cumulative and link de-
lays respectively. For a given delay variance estimate, we
can associate its variance by using the plug in estimator
for the corresponding analytic expression. This enables
use to find confidence intervals for the estimates that will
be asymptotically accurate for large n. For example, if we
use n probes to form the estimate Vk���� bC�k���bs�, we as-
sociate with this a variance ���n where �� � �� � bC�k��� �
����. We write confidence limits for the estimate as

Vk��
�� bC�k��bs�� z��� ��n� (17)

where z��� denotes the number that cuts off an area 	�� in
the right tail of the standard normal distribution. This is
used for a confidence interval of level �� 	.

V. IMPACT OF LOSS ON ESTIMATOR VARIANCE

We relax the assumption of finite delays, Here we iden-
tify infinite delays with packet loss, although the same re-
sults would hold were we to treat as lost any packet with
source to leaf delay greater than some finite value. The
link and cumulative delay random variables will be de-
noted by D�

k and X �
k respectively each possibly taking the

value �. We use Dk to be the distribution of D �
k con-

ditional on D�
k 
 �, and similarly for Xk. We assume

throughout that the Dk have finite fourth moments. Since
we are interested in delay variance, we want to estimate
Var�Xk� and Var�Dk� even in the presence of packet loss.
For estimation, the effect of packet loss is to reduce the
number of delay samples available, and hence to increase
the variability of the estimates. A simple way to apply
the foregoing theory is to restrict attention to only those
packets that are received at every leaf (or at least at every
element of R�k� when estimating sk). A disadvantage of
this approach is that is does not scale well as the topology
grows. For assuming link loss rates to be bounded away
from zero, the proportion of packets reaching all receivers
in a tree decays geometrically fast in the number of links
in the tree.

An alternative that wastes less data is to calculate pair-
wise estimates of bsij that use all packets received at i and
j. Let us formalize this. For a subset of receivers S � V

define In�S� � fi � f�� �� � � � � � ng j X�i�
j 
 � �j � Sg:

the subset of the first n probes that are received at all nodes
in S; set Nn�S� � �In�S�. We will sometimes write
In�i�� � � � � ir� for In�fi�� � � � � irg�, and similarly for Nn.
For S � R let V �S� be the set of nodes in the minimal
tree spanning � and S. Set B�S� �

Q
i�V �S� �i, where

�i is the probability of successful transmission over link
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Fig. 2. TREES USED IN SIMULATIONS. LEFT: 8-leaf binary tree for model simulations ; RIGHT: Heterogeneous 7-leaf tree for
ns simulation.

k. Clearly n��Nn�S� converges almost surely to B�S�
as n � �. Estimator variance can be reduced by us-
ing all packets in I

n
�i� j� to estimate sij , not just those in

In�R�i � j�. Define

bvij �
�

N

�
�X

m

X
�m�
i X

�m�
j � �

N

X
m�m�

X
�m�
i X

�m��
j

�
A
(18)

where N abbreviates Nn�i� j� and in the sums m�m� run
over In�i� j�. bvij is an unbiased estimate on sij . Analo-
gous to the previous results we have

Theorem 4: (i) For each k � V n R the random vari-
ables fpn �bvij � sk� j fi� jg � Q�k�g converge in distri-
bution as n � � to a multivariate Gaussian random vari-
able with mean 0 and covariance matrix G�k��ij����m� �
C�k��ij����m�B�i� j� ��m���B�i� j�B���m��. Hence thebvij are consistent estimators of sk and so is Vk��� bv� for
any deterministic covariance aggregator �. For any deter-
ministic covariance aggregator �,

p
n�Vk��� bv�� sk� con-

verges in distribution as n � � to a Gaussian random
variable of mean zero and variance � �G�k� � �.
(ii) The minimal asymptotic variance inf��Dk

� �G�k� ��
is achieved when � � ���G�; the corresponding minimal
asymptotic variance is

�
� �G�k��� � ����

.

(iii) Vk���� bG��bv� has the same asymptotic properties as
Vk��

��G��bv� where the estimated covariance bG is defined
by

Nn�i� j�Nn�k� ��

Nn�i� j� k� ��
bG�ij���k�� �

X
m

Z
�m�
i Z

�m�
j Z

�m�
k

Z
�m�
�

� �

Nn�i� j� k� ��

X
m

Z
�m�
i Z

�m�
j

X
m�

Z
�m�
k

Z
�m��
�

(19)

where the sums run over In�i� j� k� ��.
The corresponding version of the minimum variance

link delay variance estimator follows by replacing C by
G and bs by bv throughout Section IV-B.

VI. SIMULATION EVALUATION

We conducted two types of simulation (i) model simula-
tion with packet delay chosen pseudo-randomly according
to a given distribution; and (ii) ns [22] simulations that rep-
resented both the probe traffic mixed in with background
traffic of TCP and UDP sessions and delay occurred as re-
sult of queueing against background traffic, and loss due to
buffer overflow. The model simulations allow us to com-
pare the theoretical prediction with a model in a controlled
manner; their purpose is to show that the statistical prop-
erties of the estimators conform to the model used. The ns
simulation allow us to investigate the performance of the
inference method in a more realistic setting in which the
model assumption (such as independence) may not be ex-
actly satisfied. Their purpose is to investigate conformance
of the predicted delay variances with those occurring in the
network interior.

A. Model Simulations

The model simulation used an 8 leaf binary tree (see
Figure 2(left)); delays were exponentially distributed. The
delay variances were heterogeneous: leaf links 8 and 15
had delay variance 10, all other links had delay variance 1.
Losses were not modeled. This heterogeneity was chosen
in order to evaluate the advantages of the minimum vari-
ance estimator. We present a representative set of results
from experiments for the link delay variance W and the
cumulative delay variance V .
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Fig. 3. VARIANCE OF ESTIMATED VARIANCE. Cumulative Delay Variance to nodes 1,6,10,15 in Figure 2(left). LEFT: Calculate
Variance; RIGHT: Empirical Variance from 100 simulations.

Weight �ij Link pairs �i� j�
0.000018 (8,15)
0.001213 (8,12) (8,13) (10,15) (11,15)
0.001811 (8,14) (9,15)
0.081286 (10,12) (10,13) (11,12) (11,13)
0.121322 (9,12) (9,13) (10,14) (11,14)
0.181077 (9,14)

TABLE I
WEIGHTS FOR MINIMUM VARIANCE ESTIMATOR. Topology
of Figure 2. Links 8 and 15 have ten times variance of others.

A.1 Convergence

Figure 3 shows the variance of the cumulative delay
variance from sources to nodes k � �� �� ��� �� in Fig-
ure 2(left), plotted as a function of the number of probes.
On the left is the theoretical variance Var�Vk����C��bs��;
on the right the empirical variance from 100 samples of
Vk����C��bs� found by simulation. Observe in both cases
the decay of the variance towards 0 as the number of
probes increases; furthermore the experimental variance is
very close to the theoretical values over the range of probe
numbers.

Figure 4 shows detail from a single simulation; sam-
ple paths of the link variance estimator Wk��� bs� for links
k � �� �� �� �� as function of the number of probes, for
up to 10,000 probes. On the left figure, the aggregator �
is uniform, on the right, the minimum variance aggregator
��� bC�. Observe in both cases that the estimate approaches
the model value, 1, as the number of probes increases.

A.2 Variance Reduction

In Figure 4, convergence is tighter for the minimum
variance estimator (on the right) than in the uniform case;
this is particularly apparent in the left region of each plot,
corresponding to smaller numbers of probes. The differ-

ence is particularly evident for link 1 (which has 2 high
variance links as descendents, 8 and 15) and link 3, which
has link 15 as a descendent. The variance of the estima-
tors Wk for both these links is decreased in the minimum
variance estimator, relative to the uniform estimator, by re-
ducing the weight �ij when i or j corresponds to a high
variance link. This is particularly striking in the mini-
mum variance estimator for link 1; we tabulate the weights
�ij�C���� in Table I. The weight for the pair ��� ��� of
high variance links is ���� times the highest weight, that
for pair �	� �
�.

To see the statistics of estimator variation reduction, we
display in Figure 5 the ratio of the standard deviation of
the uniform estimator to the standard deviation of the min-
imum variance estimator, and a function of the number
of probes. This in shown on the left for the cumulative
variance, and on the right for the link delay variance. For
the cumulative variance we display only for links, 1,2 and
3; the other internal links the uniform and minimum vari-
ance estimators are identical because there is only one term
in the sum for V . The figures show that the reduction in
variance is roughly uniform across a range of experiment
length up to 10,000 probes. The standard deviation was
roughly halved for the cumulative delay variance, and be-
tween 0.3 and 0.5 for the link delay variance. Reduction
was somewhat greater for the standard deviation of the link
delay variance, except for nodes 4 and 7. These nodes have
only two descendants, one of which terminates a high vari-
ance link; there is no flexibility to avoid the high variance
of the first term of Wk � Vk � Vf�k�.

B. Network Simulation

B.1 Methodology

The ns simulations used the topology in Figure 2(right).
We arranged for some heterogeneity between the edges
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and the center of the tree in order to mimic the difference
between the core and edges of a large WAN, with the in-
terior of the tree having higher capacity (5Mb/sec) and la-
tency (50ms) than at the edge (1Mb/sec and 10ms). Each
node had a finite buffer capacity; packet losses were due
to drops for the tail of the buffer. We used buffer capac-
ities of 4 and 20 packets in two different sets of experi-
ments. The cross traffic comprised 66 FTP sessions over
TCP, and 29 UDP traffic sources following an exponen-
tial on-off model; there were on average around 8 back-
ground traffic sources per link. In each simulation we use
the source-to-leaf delays of probes as data to infer delay
variance per internal link by and also from the source to a
given internal node. Since the simulations exhibit packet
loss, the inference was performed using the algorithms de-
scribed in Section V. We compared the inferred valuesWk

with the actual delay variance for probes on internal links
that was observed during the simulation run. The compar-
ison was performed over each link in Figure 2(right) for
100 simulation runs.

B.2 Comparison of Inferred and Actual Delay Variance

Figure 6 shows scatter plots of 1200 pairs of (inferred,
actual) link delay variance, based on 1000 probes, on the
left with buffer capacity of 4 packets, on the right with
buffer capacity 20 packets. Also shown is the line through
the origin at gradient 1; a point on this line would indi-
cate an instance of perfect inference. In the scatter plots
we differentiate between predictions using the uniform es-
timator, and those using the minimum variance estimator.

Taking each plot separately we observe that inference
is more accurate for the minimum variance estimator than
the uniform estimator, the difference being more evident
for the smaller buffer size. Comparing the plots we see that
inference is more accurate when for the simulated network
with larger buffer capacities, particularly for small delay
variances. A small number of inferred values were nega-
tive. This occurred for some links of high bandwidth for
which queueing delays were small. Estimation of the link
delay variance as the difference between the variance of
the cumulative delays (see (15)) is sensitive to estimation
errors. Nevertheless, the estimation error is sufficiently
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Fig. 6. SCATTER PLOTS FOR LINK DELAY INFERENCE. Pairs of (actual,inferred) over 12 links in 100 experiments, each using
1000 probes LEFT: nodes have 4 packet buffers; RIGHT: nodes have 20 packet buffers.

small that is would not impair identification of those links
with the largest delay variance. Furthermore, in practice
we can avoid the worst small variance estimation errors
by eliminating estimates that are not significantly different
from zero according at some confidence level. Similar to
(17), these are the estimatesWk from n probes for which
Wk � z���

p
n, � � � is the desired (one-sided) confi-

dence level, and �� is the appropriate asymptotic variance
expressed in terms of the estimated covariance.

We attribute bias of inference to departures of the delay
process from the independence assumption of the model.
We calculated the off-diagonal elements of the correlation
matrix of the actual link delays. For buffer size 4 the mean
value was 0.071, the maximum 0.51. For buffer size 20
the mean was 0.021, the maximum 0.17. Thus correla-
tions were more pronounced for the smaller buffer size,
leading to greater inference inaccuracy. We found that bias
was more pronounced in the inference of cumulative delay,
particularly for buffer size 20 where the cumulative delay
variance is almost always overestimated. Bias was less ev-
ident for the link delay variance. Since this is expressed as
a difference of estimated cumulative delay variance, con-
sistent bias in the latter quantities should cancel somewhat
in subtraction. Conversely, small delay variances are better
estimated for for the cumulative than the link case.

In order to quantify the accuracy of inference we define
a metric for evaluating estimator accuracy. If w and bw are
the actual and inferred delay variances (either cumulative
to a link or at the link itself) we form their error factor

F � bw�w� � max

� bw
w
�
wbw
�
� (20)

For example, if bw is either twice or half w, their error fac-
tor is �. As a robust summary statistic to capture the center
of the distribution of error factors, we use the two-sided

buffer = 4 pkts. buffer = 20 pkts.
z unif. min. var. unif. min. var.
0 2.31 2.06 1.32 1.32
2 1.56 1.76 1.23 1.23

TABLE II
QUARTILE WEIGHTED MEDIAN ERROR FACTORS FOR

INFERENCE ON 1000 PACKETS. Link delay variance
estimation, according to number of standard deviations z in

confidence level to avoid small variances. Errors are smaller for
minimum variance estimator than uniform estimator, and also

with increased buffer capacity.

quartile-weighted median (QWM)

�Q��� � �Q�� � Q������� (21)

where Qp denotes the pth quantile of a given set of error
factors.

In Table II we display the QWM of error factors for
link variance estimation. Small or negative inferred vari-
ances were omitted, the quantity z being the number of
standard deviations characterizing the confidence interval
about �. z � � corresponds to rejecting only negative
inferred variances. Ruling out these small variances de-
creases the QWM of the error factor: the smaller variances
typically have higher error factor. (For z � �, buffer = �,
it happens that the 75th-percentile of the error factor dis-
tribution is larger for the minimum variance estimator, but
this is atypical). For large buffer sizes the error factors are
noticeably smaller; the difference in accuracy between the
uniform and minimum variance estimator is smaller too.
We found no great advantage in increasing the number of
probes to 10,000 since bias becomes a larger part of the
errors.
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VII. CONCLUSIONS AND FURTHER WORK

In this paper we have proposed a novel technique for the
inference from end-to-end measurements of the variance
of the delay encountered by multicast packets on an inter-
nal link. The cooperation of intervening network nodes is
not required.

We constructed a convex family of variance estimators
and found the estimator of minimal asymptotic variance.
Evaluating the minimal variance estimator comes at some
computational cost, namely, the inversion of the covari-
ance matrix bC. In work to be reported elsewhere, we show
how this computation may be considerably simplified for
binary trees, although at the cost of increasing estimator
variance somewhat. Another approach is to compromise
between the computational simplicity of the uniform esti-
mator and variance reduction. An example would be to set
�ij � � for fi� jg in some subset of Q�k� in which the
measures end-to-end variances bsi are high. It remains to
develop a robust approach along these lines.

The ns experiments showed typical errors of about 20%
in estimation of the delay variance using 1,000 probes. We
observe that using a 40 bytes probe every 100ms, the load
on the network is less that 4kb/sec and the measurements
can be completed within 2 minutes.

We found inference to be more accurate in networks
with larger buffers; there was smaller correlation between
delays at different nodes and hence closer conformance to
the underlying model. It appear that the larger buffers ad-
mit a greater diversity of connections through a node over
queueing timescales, diluting the correlation seen between
delays at successive nodes. We believe that diversity of
traffic in real networks such as the Internet makes large
and long lasting correlations unlikely. Furthermore the in-
troduction of Random Early Detection (RED) [11] policies
in Internet routers may help reduce dependence; evidence
for this comes from related work on internal link loss in-
ference [4], where the introduction of RED was found to
increase accuracy of inference relative to networks with a
Drop from Tail packet discard mechanism.
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Multicast Topology Inference from Measured
End-to-End Loss

N.G. Duffield, J. Horowitz, F. Lo Presti, D. Towsley

Abstract—The use of multicast inference on end-to-end measure-
ment has recently been proposed as a means to infer network inter-
nal characteristics such as packet link loss rate and delay. In this pa-
per we propose three types of algorithm that use loss measurements
to infer the underlying multicast topology: (i) a grouping estima-
tor that exploits the monotonicity of loss rates with increasing path
length; (ii) a maximum likelihood estimator; and (iii) a Bayesian
estimator. We establish their consistency, compare their complexity
and accuracy, and analyze the modes of failure and their asymptotic
probabilities.

Keywords: Communication Networks, End-to-End Measurement,
Maximum Likelihood Estimation, Multicast, Statistical Inference,
Topology Discovery.

I. INTRODUCTION

A. Motivation.

In this paper we propose and evaluate a number of al-
gorithms for the inference of logical multicast topologies
from end-to-end network measurements. All are devel-
oped from recent work that shows how to infer per link
loss rate from measured end-to-end loss of multicast traf-
fic. The idea behind this approach is that performance
characteristics across a number of intersecting network
paths can be combined to reveal characteristics of the in-
tersection of the paths. In this way, one can infer charac-
teristics across a portion of the path without requiring the
portion’s endpoints to terminate measurements.

The use of active multicast probes to perform mea-
surements is particularly well suited to this approach due
to the inherent correlations in packet loss seen at differ-
ent receivers. Consider a multicast routing tree connect-
ing the probe source to a number of receivers. When a
probe packet is dispatched down the tree from the source,
a copy is sent down each descendant link from every
branch point encountered. By this action, one packet at
the source gives rise to a copy of the packet at each re-
ceiver. Thus a packet reaching each member of a subset
of receivers encounters identical conditions between the
source and the receivers’ closest common branch point in
the tree.
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This approach has been used to infer the per link packet
loss probabilities for logical multicast trees with a known
topology. The Maximum Likelihood Estimator (MLE)
for the link probabilities was determined in [3] under the
assumption that probe loss occurs independently across
links and between probes. This estimate is somewhat ro-
bust with respect to violations of this assumption. This
approach will be discussed in more detail presently.

The focus of the current paper is the extension of these
methods to infer the logical topology when it is not known
in advance. This is motivated in part by ongoing work [1]
to incorporate the loss-based MLE into the National In-
ternet Measurement Infrastructure [14]. In this case, in-
ference is performed on end-to-end measurements arising
from the exchange of multicast probes between a num-
ber of measurement hosts stationed in the Internet. The
methods here can be used to infer first the logical multi-
cast topology, and then the loss rates on the links in this
topology. What we do not provide (are unable to) is an
algorithm for identifying the physical topology of a net-
work.

A more important motivation for this work is that
knowledge of the multicast topology can be used by mul-
ticast applications. It has been shown in [9] that orga-
nizing a set of receivers in a bulk transfer application
into a tree can substantially improve performance. Such
an organization is central component of the widely used
RMTP-II protocol [20]. The development of tree con-
struction algorithms for the purpose of supporting reliable
multicast has been identified to be of fundamental impor-
tance by the Reliable Multicast Transport Group of the
IETF; see [7]. This motivated the work reported in [16],
which was concerned with grouping multicast receivers
that share the same set of network bottlenecks from the
source for the purposes of congestion control. Closely re-
lated to [3], the approach of [16] is based on estimating
packet loss rates for the path between the source and the
common ancestor of pairs of nodes in the special case of
binary trees. Since loss is a non-decreasing function of the
path length, this quantity should be maximal for a sibling
pair. The whole binary tree is reconstructed by iterating
this procedure.
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B. Contribution.

This paper describes and evaluates three methods for
inference of logical multicast topology from end-to-end
multicast measurements. Two of these ((i) and (ii) below)
are directly based on the MLE for link loss probabilities
of [3], as recounted in Section II. In more detail, the three
methods are:
(i) Grouping Classifiers. We extend the grouping method
of [16] to general trees, and establish its correctness. This
is done in two steps. First, in Section III, we apply and
extend the methods of [3] to establish a one-to-one corre-
spondence between the the expected distribution of events
measurable at the leaves, and the underlying topology
and loss rates. In particular, we provide an algorithm
that reconstructs arbitrary (e.g. non-binary) topologies
from the corresponding distributions of leaf-measurable
events. Second, in Section IV, we adapt the algorithm
to work with the empirical leaf-event distributions arising
from multicast end-to-end measurements. A complica-
tion arises through the fact that certain equalities that hold
for the expected distributions only hold approximately
for the measured distributions. We propose and evalu-
ate three variants of the algorithm to overcome this. One
is based on the above reconstruction method for general
trees; the other two methods use binary grouping opera-
tions to reconstruct a binary tree, which is then manipu-
lated to yield the inferred tree.
(ii) Maximum Likelihood Classifier. Given the measured
end-to-end packet losses, the link loss estimator of [3] as-
sociates a likelihood with each possible logical multicast
tree connecting the source to the receivers. The maxi-
mum likelihood classifier selects that tree for which the
likelihood is maximal. This estimator is presented in Sec-
tion V.
(iii) Bayesian Classifier. In this approach, the topology
and link probabilities are treated as random variables with
some prior distribution. In Bayesian decision theory one
specifies a loss function that characterizes a penalty for
misclassification, then selects the topology that minimizes
the mean value of this penalty according to the posterior
distribution (i.e. the conditional distribution of the pa-
rameters given the measurements). This estimator is pre-
sented in Section VI.

In all cases we establish that the classifiers are con-
sistent, i.e., the probability of correct classification con-
verges to � as the number of probes grows to infinity. We
establish connections amongst the grouping-based algo-
rithms. In particular, the general grouping-based algo-
rithm is equivalent to the composition of the binary group-
ing algorithm with a pruning operation that excises links
of zero loss and identifies their endpoints. The latter ap-
proach turns out to be computationally simpler.

The ML and Bayesian classifiers, embodying standard
statistical methods, provide reference points for the ac-

curacy of the grouping-based classifiers. In Section VII
we use simulations to evaluate the relative accuracy of
the topology classifiers, and to understand their modes of
failure. We find that the accuracy of the grouping clas-
sifiers either closely matches or exceeds that of the other
methods when applied to the identification of a selection
of fixed unknown topologies. This finding is supported
by some numerical results on the tail asymptotics of mis-
classification probabilities when using large numbers of
probes. The simulations show the techniques can resolve
topologies even when link loss probabilities are as small
as about 1%, on the basis of data from a few thousand
probes. This data could be gathered from a probe source
of low bandwidth (a few tens of kbits per second) over a
few minutes.

The ML and Bayesian classifiers are considerably more
computationally complex than the grouping-based meth-
ods. This is for two reasons: (i) they exhaustively search
the set of possible trees, whereas the grouping approaches
progressively exclude certain topologies from considera-
tion as groups are formed; (ii) their per-topology com-
putational costs are greater. Since the number of pos-
sible topologies grows rapidly with the number of re-
ceivers, any decrease in per-topology cost for the ML and
Bayesian classifiers would eventually be swamped by the
growth in the number of possible topologies. For this
reason, we expect significant decrease in complexity will
only be available for classifiers that are able to search the
topology space in a relatively sophisticated manner, e.g.
as performed by the grouping-based algorithms. Sum-
marizing, we conclude that binary-based grouping algo-
rithms provide the best combination of accuracy and com-
putational simplicity.

In Section VIII we further analyze the modes of mis-
classification in grouping algorithms. We distinguish the
coarser notion of misgrouping, which entails failure to
identify the descendant leaves of a given node. This no-
tion is relevant, for example, in multicast congestion con-
trol, where one is interested in establishing the set of re-
ceivers that are behind each bottleneck. We obtain rates
of convergence of the probability of successful grouping
and classification in the regime of small link loss rates.

We conclude in Section IX; the proofs and some more
detailed technical material are deferred to Section X.

C. Other Related Work.

The mtrace [12] measurement tool, reports the route
from a multicast source to a receiver, along with other
information about that path such as per-hop loss statis-
tics. The tracer tool [10] uses mtrace to perform
topology discovery. We briefly contrast some properties
of those methods with those presented here. (i) Access:
mtrace relies on routers to respond to explicit measure-
ment queries; access to such facilities may be restricted
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by service providers. The present method does not re-
quire such cooperation. (ii) Scaling: mtrace needs to
run once per receiver in order to cover the tree, so that
each router must process requests from all its descendant
leaf nodes. The present method works with a single pass
down the tree. On the other hand, our methods do not as-
sociate physical network addresses with nodes of the logi-
cal multicast tree. For this reason, we envisage combining
mtrace and multicast-based estimation in measurement
infrastructures, complementing infrequent mtrace mea-
surements with ongoing multicast based-inference to de-
tect topology changes.

In the broader context of network tomography we men-
tion some recent analytic work on a different problem,
namely, determination of source-destination traffic matrix
from source- and destination-averaged traffic volumes;
see [18], [19] for further details.

II. LOSS TREES AND INFERENCE OF LOSS RATE

We begin by reviewing the tree and loss models used to
formulate the MLE for link loss probabilities in a known
topology. We identify the physical multicast tree as com-
prising actual network elements (the nodes) and the com-
munication links that join them. The logical multicast tree
comprises the branch points of the physical tree, and the
logical links between them. The logical links comprise
one or more physical links. Thus each node in the logical
tree has at least two children, except the leaf nodes (which
have none) and the root (which we assume has one). We
can construct the logical tree from the physical tree by the
following procedure: except for the root, delete each node
that has only one child, and adjust the link set accordingly
by linking its parent directly to its child.

A. Tree Model.

Let � � � � � � � denote a logical multicast tree with
nodes � and links � . We identify one node, the root � ,
with the source of probes, and set of leaves � 	 � with
the set of receivers. We say that a link is internal if nei-
ther of its endpoints is the root or a leaf node. We will
occasionally use 
 to denote � � � � � � 
 � � � � , where
1 denotes the child node of � , the set of nodes terminat-
ing internal links. Each node � , apart from the root, has
a parent � � � � such that � � � � � � � � � � . We will some-
times refer to � � � � � � � � as link � . Define recursively the
compositions � � � � � � � � � with � � � � . We say �
is descended from � , and write � � � , if � � � � � � � for
some positive integer � . The set of children of � , namely

� � � � � � � � � � � � is denoted by � � � � . The (nearest)
ancestor � � � � of a subset � 	 � is the � -least upper
bound of all the elements of � . A collection of nodes �
are said to be siblings if they have the same parent, i.e.,
if � � � � � � � � � � � � � . A maximal sibling set com-
prises the entire set � � � � of children of some node � � � .

� � � � � � � � � � � � � � � � will denote the subtree rooted at � ;
� � � � � � � � � � � is the set of receivers in � � � � .

B. Loss Model.

For each link we assume an independent Bernoulli loss
model: each probe is successfully transmitted across link

� with probability  ! . Thus the progress of each probe
down the tree is described by an independent copy of a
stochastic process " � � " ! � ! # $ as follows. " % � 
 .

" ! � 
 if the probe reaches node � � � and � oth-
erwise. If " ! � � , then " & � � � � � � � � � � . Other-
wise, ' ( " & � 
 ) " ! � 
 * �  & and ' ( " & � � ) " ! �


 * � 
 +  & . We adopt the convention  % � 
 and de-
note  � �  , � , # $ . We call the pair � � �  � a loss tree.- . / 0

will denote the distribution of " on the loss tree
� � �  � . In what follows we shall work exclusively with
canonical loss trees. A loss tree is said to be in canonical
form if � 1  ! 1 
 � � � � � except for � � � . Any
tree � � �  � not in canonical form can be reduced to a loss
tree, � � 2 �  2 � , in canonical form such that the distribution
of � " ! � ! # 3 is the same under the corresponding prob-
abilities

- . / 0
and

- . 4 / 0 4
. To achieve this, links � with

 ! � 
 are excised and their endpoints identified. If any
link � has  ! � � , then " & � � for all � � � , and hence
no probes are received at any receiver in � � � � . By re-
moval of subtrees � � � � rooted at such � , we obtain a tree
in which all probabilities  ! 5 � . Henceforth we shall
consider only canonical loss trees.

C. Inference of Loss Rates.

When a probe is sent down the tree from the root � ,
we can not observe the whole process " , but only the
outcome � " ! � ! # 3 � 6 � � � � 
 � 3 that indicates whether
or not the probe reached each receiver. In [3] it was shown
how the link probabilities can be determined from the the
distribution of outcomes when the topology is known. Set

7 � � � � - . / 0 ( 8 & # 3 9 ! : " & � 
 * ; (1)

The internal link probabilities  can be found from 7 �
� 7 � � � � � � � � as follows. For � � � let < � � � be
the probability that the probe reaches � . Thus < � � � �= & > !  & , the product of the probabilities of successful
transmission on each link between � and the root � . For

� 	 � we write 7 � � � � - ( 8 ! # ? 8 & # 3 9 ! : " & � 
 * . A
short probabilistic argument shows that for any � @ � � � � ,

� 
 + 7 � � � A < � � � � � B
& # ?

� 
 + 7 � � � A < � � � � ; (2)

In particular, this holds for � � � � � � in which case7 � � � � 7 � � � . It can be shown for canonical loss trees
that < � � � is the unique solution of (2); see Lemma 1 in
[3] or Prop 1 below. Thus given � 7 � � � � � � � � one
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can find � � � � � � � � � , and hence � , by taking appropriate
quotients.

Let � 	 � � 
 � � 
 � � � 
 � 
 � � � with � 
 � � 	 � � 
 � �� � � � � be
the set of outcomes arising from the dispatch of � probes
from the source. We denote the log-likelihood function of
this event by �

� � 
 � � 	 � � � � � � � � � � (3)

Construct the empirical distributions �  � � � 	� ! � " �� # � $ % � � 
 � � � 
 � �% , i.e. the fraction of the �
probes that reaches some receiver descended from � . Let�� denote the corresponding solution of (2) obtained by
using � in place of  , and �� the corresponding probabili-
ties obtained by taking quotients of the �� . The following
results, the proof of which can be found in [3], holds.

Theorem 1: Let � be a canonical loss tree.
(i) The loss model is identifiable, i.e. & � � � 	 & � � � '

im-
plies � 	 � ( .
(ii) with probability 1, for sufficiently large � , �� 
 �� are
the Maximum Likelihood Estimators of � 
 � , i.e.,

�� 	 ) * � + ) ,�
�

� � 
 � � � (4)

As a consequence of the MLE property, �� is consistent
( �� � - ./ 0 � with probability 1), and asymptotically nor-
mal ( 1 � � �� / � � converges in distribution to a multivari-
ate Gaussian random variable as � 0 2 ), and similarly
for � ; see [17].

III. DETERMINISTIC RECONSTRUCTION OF LOSS

TREES BY GROUPING

The use of estimates of shared loss rates at multicast re-
ceivers has been proposed recently in order to group mul-
ticast receivers that share the same set of bottlenecks on
the path from the source [16]. The approach was formu-
lated for binary trees, with shared loss rates having the
direct interpretation of the loss rate on the path from the
root to the (nearest) ancestor of two receivers. Since the
loss rate cannot decrease as the path is extended, the pair
of receivers for which shared loss rate is greatest will be
siblings; if not then one of the receivers would have a sib-
ling and the shared loss rate on the path to their ancestor
would be greater. This maximizing pair is identified as a
pair of siblings and replaced by a composite node that rep-
resents their parent. Iterating this procedure should then
reconstruct the binary tree.

In this section and the following section we establish
theoretically the correctness of this approach, and extend
it to cover general trees, i.e., those with nodes whose
branching ratio may be greater than two. In this sec-
tion we describe how canonical loss trees are in one-to-
one correspondence with the probability distributions of
the random variables � � � � � � � visible at the receivers.

….

0

a(U’)

k a(U)

U

Fig. 1. 3 4 5 6 7 8 3 4 5 7 where 5 6 9 5 : ; < = . Adjoining the non-
sibling node

<
to 5 increases the value of 3 ; see Prop. 1(iv).

Thus the loss tree can be recovered from the receiver
probabilities. This is achieved by employing an analog
of the shared loss for binary trees. This is a function> � ? � of the loss distribution at a set of nodes ? that
is minimized when ? is a set of siblings, in which case> � ? � 	 � � @ � ? � � � , i.e. the complement of the shared
loss rate to the nodes ? . In the case of binary trees, we can
identify the minimizing set ? as siblings and substitute a
composite node that represents their parent. Iterating this
procedure should then reconstruct the tree. The definition
and relevant properties of the function

>
are given in the

following proposition.
Proposition 1: Let � 	 � A 
 B � be a canonical loss

tree, and let ? C A with D ? E F .
(i) The equation � F /  � ? � G > � 	 H � � I � F /  � � � G > �
has a unique solution

> � ? � E  � ? � .
(ii) Let

> E  � ? � . Then � F /  � ? � G > � EH � � I � F /  � � � G > � iff
> E > � ? � .

(iii)
> � ? � 	 � � @ � ? � � if ? is a set of siblings, and hence> � ? � takes the same value for any sibling set with a given

parent.
(iv) Let ? be a set of siblings, and suppose � J A is such
that @ � ? K L � M � N @ � ? � and @ � ? K L � M � N � . Then> � ? K L � M � E > � ? � .

Proposition 1(iv) shows that adjoining a non-sibling
non-ancestor node to a set of siblings can only increase
the value of

>
; see Figure 1. This provides the means to

reconstruct the tree � directly from the L  � ? � O ? C P M .
We call the procedure to do this the Deterministic Loss
Tree Classification Algorithm (DLT), specified in Fig-
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1. Input: The set of receivers � and associated
probabilities � � � � � � � � � � ;

2. � 	 � 
 � ; � 	 � 
 � ; � 	 � 
 
 ;
3. foreach � � � 	 do

� � � � � 
 � � � � ; enddo
4. while � � 	 � � � do
5. select � 
 � � � � � � � � � 	 that minimizes

� � � � ;
6. while there exists � � � 	 � � such that� � � � � � � � 
 � � � � do
7. � � 
 � � � � � ;
8. enddo
9. � 	 � 
 � 	 � � � � ; � 	 � 
 � � 	 � � � � � � � ;
10. foreach � � � do
11. � 	 � 
 � 	 � � � � � � � � ; � 	 � � � � 
 � � � � � � � � � ;
12. enddo
13. enddo
14. � 	 
 � 	 � � � � ;
15. � 	 
 � 	 � � � � � � ;
16. � 	 � 
 � � � � ; � 	� 
 � ;
17. Output: loss tree � � � 	 � � 	 � � � 	 � .

Fig. 2. Deterministic Loss Tree Classification Algorithm (DLT).

ure 2; it works as follows. At the start of each while loop
from line 4, the set � 	 comprises those nodes available
for grouping. We first find the pair � 
 � � � � � � � that
minimizes

� � � � (line 5), then progressively adjoin to it
further elements that do not increase the value of

�
(lines

6 and 7). The members of the largest set obtained this way
are identified as siblings; they are removed from the pool
of nodes and replaced by their parent, designated by their
union � (line 9). Links connecting � to its children (i.e.
members) are added to the tree, and the link loss proba-
bilities are determined by taking appropriate quotients of� 	  (line 11). This process is repeated until all sibling
sets have been identified. Finally, we adjoin the root node

� and the link joining it to its single child (line 14).

Theorem 2: (i) DLT reconstructs any canonical loss
tree � ! � � � from its receiver set � and the associated
probabilities � � � � � � � � � � .

(ii) Canonical loss trees are identifiable, i.e. " # $ % 

" # & $ % &

implies that � ! � � � 
 � ! 	 � � 	 � .

Although we have not shown it here, it is possible to
establish that any set � 	 present at line 4 of DLT has the
property that ' ( ) � * + & � � � � is achieved when � is a sib-
ling set. Consequently one could replace steps 5–8 of
DLT by simply finding the maximal sibling set, i.e. se-
lect a maximal � � � 	 that minimizes

� � � � . However,
this approach would have worse computational properties
since it requires inspecting every subset of � 	 .

� � � � is a root of the polynomial of degree , � - �
from Prop. 1(i). For a binary subset,

� � � � � . � � is written

1. Input: a loss tree � ! � � � ;
2. Parameter: a threshold / 0 � ;
3. � 	 � 
 � � � � 1 # � � � ; � 	 � 
 � � � � . � � . � 1 # � � � � ;
4. � � 
 1 # � � � ;
5. while � 2
 
 do
6. select � � � ;
7. � � 
 � � � � � � 1 # � � � ;
8. if � � � - � 3 � 4 / � 5 � � 2
 � � then
9. � 	 � 
 � � 	 � � � 6 # & � � � � . � � . � 1 # � � � � � �

� � 6 # & � � � � � � � ;
10. � 	 � 
 � 	 � � � � � 1 # � � � ;
11. else
12. � 	 � 
 � 	 � � � � � . � � . � 1 # � � � � ;
13. � 	 � 
 � 	 � 1 # � � � ;
14. endif;
15. enddo
16. Output: � � � 	 � � 	 � � � 	 �

Fig. 3. Tree Pruning Algorithm TP( 7 )

down explicitly

� � � � � . � � 

� � � � � � . �� � . � 8 � � � � - � � � � � . � � 9 (5)

Calculation of
� � � � requires numerical root finding

when , � � : . However, it is possible to recover !
in a two stage procedure that requires the calculation of� � � � only on binary sets � . The first stage uses the De-
terministic Binary Loss Tree (DBLT) Classification Algo-
rithm. DBLT is identical to DLT except that grouping is
performed only over binary trees, thus omitting lines 6–8
in Figure 2. The second stage is to use a Tree Pruning
(TP) Algorithm on the output of the DBLT. TP acts on
a loss tree � � � � � � � � � by removing from � each internal
link � 6 � . � � . � with loss rate � - � ; 
 � and identifying
its endpoints . � 6 � . � . We will find it useful to specify a
slightly more general version: for / 0 � , TP( / ) prunes
link . when � - � ; 4 / . We formally specify TP( / )
in Figure 3. In Section X we prove that composing the
binary algorithm DBLT with pruning recovers the same
topology as DLT for general canonical loss trees:

Theorem 3: DLT=TP(0) < DBLT for canonical loss
trees.

IV. INFERENCE OF LOSS TREE FROM MEASURED

LEAF PROBABILITIES

In this section, we present algorithms which adapt DLT
to use the measured probabilities corresponding to the � .
Let � = > ? @; � ? A �

$ B B B $
C; D + denote the measured outcomes arising

from each of E probes. Define the processes F > ? @; recur-
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1. Input: The set of receivers � , number of probes � ,

receiver traces � � � � �� � � 	 

� � � 
 
 


�� � � ;
2. � � � � � , � � � � � � � � � � ;
3. foreach � � � , do
4. �� � � � � � � � 
 � �� 	 
 � � � �� ;

5. foreach � � �  ! ! !  � , do " � � �� � � � � �� ; enddo ;
6. enddo
7. while # � � # $ � do
8. select % � & ' 
  ' � ( ) � � that minimizes

�� � % � � * +, - . / 0 , 12 . * +, - . / 0 , 12 3
� * +, - . / 0 , 12 . / 0 , 12 3 ;

9. foreach � � �  ! ! !  � do " � � �4 � 5 6 � 4 " � � �6 enddo
10. � � � � 7 & % ( ; � � � � � � � 8 % � 7 & % ( ;
11. foreach ' � % do
12. � � � � � � 7 & � %  ' � ( ; �9 6 � � �� � ' � : �� � % � ;
13. enddo
14. enddo
15. � � � � � 7 & ; ( ; � � � � � 7 & ;  % ( ;
16. �9 4 � �� � % � ; �9 < � � ;
17. Output: loss tree � � � �  � � �  �9 � .

Fig. 4. Binary Loss Tree Classification Algorithm (BLT).

sively by

" � � �� � 5 = � > � � � " � � �= with " � � �� � � � � ��  � � � ! (6)

Thus " �� � � iff probe � was received at some re-

ceiver descended from � ; � ? � � � � � � 
 � �� 	 
 " � � �� is the
fraction of the probes �  ! ! !  � that reach some receiver
descended from � . For % ) � we define � ? � % � �

� � 
 � �� 	 
 5 = � 4 " � � �= analogously; � ? � % � is the fraction
of probes that reach some receiver descended from some
node in % . Let �� � % � be the unique solution in Prop. 1(ii)
obtained by using �? in place of ? . We will use the no-
tation � �@  �9 � to denote an inferred loss tree; sometimes
we will use �@ A to distinguish the topology inferred by a
particular algorithm X. B CA will denote the probability of
false identification of topology @ of the loss tree � @  9 �
i.e. B CA � D E � F G �@ A H� @ I .

Theorem 4: Let � � �  � �  9 � be a loss tree. Then
J K L � M N �� � % � � � � % � for each % ) � .

A. Classification of Binary Loss Trees

The adaptation of DLT is most straightforward for bi-
nary trees. By using ��

in place of
�

in DLT and re-
stricting the minimization of ��

to binary sets we obtain
the Binary Loss Tree (BLT) Classification Algorithm; we
specify it formally in Figure 4. This is, essentially, the al-
gorithm proposed in [16]. We have taken advantage of the
recursive structure of the " � � �� (in line 9) in order to calcu-
late the probabilities �? . Note that when BLT reconstructs

an incorrect topology �@ H� @ , the definitions of quantities
such as �� � % � and " � � �4 extend evidently to subsets % of
nodes in the incorrect topology @ � . The following theo-
rem establishes the consistency of the estimator �@ O P Q ; the
proof appears in Section X.

Theorem 5: Let � @  9 � be a binary canonical loss tree.
With probability � , �@ O P Q � @ for all sufficiently large � ,
and hence J K L � M N B CO P Q � ; .

B. Classification of General Loss Trees

The adaptation of DLT to the classification of general
loss trees from measured leaf probabilities is somewhat
more complicated than the binary case. It is shown during
the proof of Theorem 5 that the �� � % � have the same rela-
tive ordering as the

� � % � for � sufficiently large. But for
a general tree � �  � � ,

� � % � � takes the same value for any
subset % � of a maximal sibling set % ) � . For finitely
many probes, the corresponding & �� � % � � � % � ) % ( will
not in general be equal. Hence choosing to group the sub-
set % � that minimizes �� � R � will not necessarily group all
the siblings in % .

In this section we present three algorithms to clas-
sify general trees. Each of these overcomes the prob-
lem described in the previous paragraph by incorporat-
ing a threshold into the grouping procedure. The set %
is grouped if �� � % � is sufficiently close to being mini-
mal. However, this can also give rise to false inclusion
by effectively ignoring internal links whose loss rates do
not exceed the threshold. The variety of algorithms de-
rives from different ways to implement the threshold. We
establish domains in which the algorithms correctly clas-
sify canonical loss trees. In succeeding sections we eval-
uate their relative efficiencies and compare their modes
and frequencies of false classification.

B.1 Binary Loss Tree Pruning Classification Algorithm
BLTP.

Nodes are grouped as if the tree were binary, the result-
ing tree is pruned with TP( S ) to remove all internal links
with loss probabilities less than or equal to the threshold
S $ ; . Thus for each S $ ; we define BLTP( S ) to be
the composition TP( S � T BLT. A refinement U V W D � � S � of
BLTP( S ) is to recalculate the loss probabilities 9 � based
on the measurements and the pruned topology @ � .
B.2 Binary Loss Tree Clique Classification Algorithm

BLTC.

For each S $ ; , BLTC( S ) groups by forming maximal
sets of nodes % in which all binary subsets % � have �� � % � �
sufficiently close to the true minimum over all binary sets.
This amounts to replacing line 8 in Figure 4 with the fol-
lowing steps:
(i) select % � � & ' �  X � ( that minimizes �� � % � � ;
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(ii) construct the graph � of all links � � � � � � � � � such that
� � � 	 � 
� � � � � � � � � � 
 � � 
� � � � � ;
(iii) select � comprising the elements of the largest con-
nected component of � that contains � � .
Note that if the grouping is done correctly, then� � � � � � � � 
 � takes the same value for all binary subsets

� � � � � � 
 of � . For finite but large � , the corresponding
sampled 
� � � � � � � � 
 � will differ slightly.

B.3 General Loss Tree Classification Algorithm GLT.

For each 	 � � , GLT( 	 ) is a modification of DLT that
employs a threshold 	 to perform the grouping based on
�

. Each grouping step starts by finding a binary set
� � � � � � 
 of minimal 
�

, then adjoining further elements
to it provided the resulting set � satisfies 
� � � � � � � 	 � �
� � � � � � � � 
 � . The violation of this condition has the
interpretation that the ancestor � � � � is separated from

� � � � � � � � 
 � by a link with loss rate at least 	 . Thus we
replace line 8 of Figure 4 by the following.

8a. select � � � � � � � � � 
 � � that minimizes 
� � � � ;
8b. while there exists � � � � � � such that

� � � 	 � 
� � � � � � 
 � � 
� � � � � � � � 
 do
8c. � � � � � � 
 ;
8d. enddo

For clarity we have omitted the details of the dependence
of 
�

on the 
� ; these are as described before Theorem 4.

B.4 Convergence of General Loss Tree Classifiers.

As the number of probes grows, the topology estimates
furnished by BLTP( 	 ),BLTC( 	 ) and GLT( 	 ) converge to
the true topology provided all internal link loss probabil-
ities are greater than 	 . This happens for the same reason
as it does in BLT. It is not difficult to see that the determin-
istic versions of each algorithm, obtained by using

�
in

place of 
�
, reconstruct the topology. Since 
�

converges
to

�
as the number of probes grows, the same is true for

the classifiers using 
�
. We collect these results without

further proof:
Theorem 6: Let �  � ! � be a loss tree in which all

loss probabilities � � ! " � 	 � , # � $ , for some
	 � � � . For each 	 � � � � 	 � � and each algorithm

� �
� % & ' ( � 	 � � % & ' � � 	 � � � & ' � 	 � 
 , with probability � , 
 ) �

 for all sufficiently large � , and hence * + , - . / 0 1) � � .
Convergence to the true topology requires 	 to be

smaller than the internal link loss rates, which are typ-
ically not known in advance. A very small value of 	
is more likely to satisfy the above condition but at the
cost, as shown in Section VIII, of slower classifier conver-
gence. A large value of 	 , on the other hand, is more likely
to result in systematically removing links with small loss
rates. In practice, however, we believe that the choice of
	 does not pose a problem. We expect, indeed, that for

many applications while it is important to correctly iden-
tify links with high loss rate, it could be considered ac-
ceptable failure to detect those with small loss rates. In
other words, in practice, it could be sufficient the con-
vergence of the inferred topology to  � � ' ( � 	 � �  �
obtained from  by ignoring links whose loss rates fell
below some specific value 	 which, in this case, would be
regarded as some application-specific minimum loss rate
of interest.

The results below establish the desired convergence to
 � for any 	 � � � � � � provided 	 2� ! " , # � $ . The key
observation is that since the deterministic versions of each
algorithm reconstruct  � , so does each algorithm, as the
number of probes grows. Denote 0 1� � 	 � � ( 3 4 5 6 
 � 2�

 � 7 . Without further proof we have:
Theorem 7: Let �  � ! � be a loss tree. For each 	 �

� � � � � , such that 	 2� ! " , # � $ , and for each algorithm� � � % & ' ( � 	 � � % & ' � � 	 � � � & ' � 	 � 
 , then with probabil-
ity � , 
 ) �  � � ' ( � 	 � �  � for all sufficiently large � ,
and hence * + , - . / 0 1) � 	 � � � .

C. Effects of Model Violation

The two underlying statistical assumptions are (i)
probes are independent; and (ii) conditioned on a probe
having reached a given node # , the events of probe loss
on distinct subtrees descended from # are independent.
We now discuss the impact of violations of these assump-
tions.

The first observation is that the estimators remain con-
sistent under the introduction of some temporal depen-
dence between probes, i.e. under violation of assumption
(i) above. Assuming the loss process to be ergodic, 
 � still
converges to � almost surely, as the number of probes �
grows. However, rates of convergence can be slower, and
hence the variance of 
�

can be higher, than for the inde-
pendent case. This would increase the misclassification
probabilities for inference from a given number of probes

� .
On the other hand, spatial dependence of loss (i.e. vi-

olations of assumption (ii) above) can lead to bias. We
take spatial loss dependence to be characterized by de-
parture from zero of an appropriate set of loss correlation
coefficients. By extending an argument given for binary
trees in [3, Theorem 7], it can be shown that the limit
quantities

� � � * + , - . / 
�
deform continuously away

from the quantities
�

of the spatially independent case
as the loss correlation coefficients move away from zero.
Hence a given canonical loss tree can be recovered cor-
rectly by applying DBLT to the quantities

� � provided
the spatial dependence is sufficiently small, i.e., to make
the

� � sufficiently close to
� � so that

� � � � � � � � � � �
iff

� � � � � � � � � � � � � for all relevant subsets of nodes � �
and � � . Then by a similar argument to that of Theorem 5,
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a tree with link loss rates greater than some � � � , is re-
covered by BLTP( � ) with probability � for a sufficiently
large number � of probes, and sufficiently small spatial
correlations.

We remark that the the experiments reported in Sec-
tions VII and VIII use network level simulation rather
than model based simulation. Hence it is expected that
the model assumptions will be violated to some extent.
Nevertheless, the classifiers are found to be quite accu-
rate.

V. MAXIMUM-LIKELIHOOD CLASSIFIER

Let � � � � denote the set of logical multicast trees with
receiver set � . Denote by 	
 �

the MLE of 
 in (4) for
the topology � . The maximum-likelihood (ML) classifier
assigns the topology 	� � � that maximizes

�
� � 
 	
 � � :

	� � � � � � � � � �� � � � � �
�

� � 
 	
 � � � (7)

We prove that, if the link probabilities are bounded away
from 0 and 1, the ML-classifier is consistent in the sense
that, w.p. 1, it identifies the correct topology as the num-
ber of probes grows to infinity. For � � � , let � � � � � 
 �� � 
 � � � � � 
 � �  ! � � " " .

Theorem 8: Let � � � and let � � 
 
 � be a loss tree with
 � � � �
. Then # $ � % & ' ( � ) * + 	� � � ,� � - � � .

VI. LOSS-BASED BAYESIAN TREE CLASSIFIER

Let � � � � denote the set of logical multicast topologies
having a given receiver set � . � . �

from Section V, is the
set of possible loss rates in the topology � . A possible
loss tree with topology in � � � � is an element of the pa-
rameter space � � / � � � � � � � � � " � � . � � � (8)

Let � � � 
 
 � be a prior distribution on
�

. Given receiver
measurements 0 � � 0 � 1 � 
 � � � 
 0 � % � � , the posterior distri-
bution on

�
is

� � � 
 
 2 0 � � � � � 
 
 � 3 � 0 2 � 
 
 � 4 3 � 0 � 
 (9)

where 3 � 0 2 � 
 
 � � 	 
 � � ) * � is the joint density of the ob-
servations and 3 � 0 � their marginal density.

A decision rule � provides an estimate � � 0 � � �
of

the loss tree given receiver measurements 0 . The quality
of a decision rule is evaluated in terms of a loss function� � 
 
 
 5 � , a nonnegative function on

� � �
interpreted as

the loss incurred by deciding that 
 5 is the true parameter
when, in fact, it is 
 . A measure of quality of a decision
rule � is its Bayes risk � � � � � � � � � 
 
 � � 0 � � , where the
expectation is taken with respect to the joint distribution� � � 
 
 � 3 � 0 2 � 
 
 � . of the loss tree 
 � � � 
 
 � and the
observations 0 . The Bayes decision rule � � is the one

that minimizes � � � � : it has least average loss. A standard
theorem in decision theory gives � � in the form:

� � � 0 � � � � � � $ 6� 7 � �
�

� � � 
 
 
 5 � � � 
 2 0 � 8 
 
 (10)

i.e., it is the minimizer of the posterior risk, which is
the expected loss with respect to the posterior distribu-
tion � � 
 2 0 � ; see Prop. 3.16 of [17] and Section 4.4, result
1 of [2].

Since our interest is in identifying the correct topology,
we choose the loss function� � � � 
 
 � 
 � � 5 
 
 5 � � � � + � ,� � 5 - where � is the indica-
tor function, i.e., no loss for a correct identification of the
topology, and unit loss for any misidentification. Here,
the loss rates 
 play the role of a nuisance parameter. The
Bayes classifier for the topology becomes 	� � � 	� � � 0 � ,
where 	� � � 0 � � � � � � $ 6� 7 � � � � � ( + � 5 ,� � 2 0 - 
 (11)

or, equivalently,

	� � � 0 � � � � � � � �� 7 � � � � � ( + � 5 � � 2 0 - � (12)

Thus the Bayes classifier 	� � yields the topology with
maximum posterior probability given the data 0 . By
definition, this classifier minimizes the misclassification
probability.

A special case is the uniform prior in which all topolo-
gies in � � � � are taken to be equally likely, and for each
topology � , 
 is distributed uniformly on � . � . The corre-
sponding prior distribution, � � � 
 
 � � � � �� � 
 � 4 9 � � � � ,
is a non-informative prior, expressing “maximum igno-
rance” about the tree topology and link probabilities.
Clearly if other prior information is available about the
tree, it may be incorporated into a non-uniform prior dis-
tribution. The Bayes classifier becomes

	� � � 0 � � � � � � � �� 7 � � � � �
� �

�� 7 3 � 0 2 � 5 
 
 � 8 
 � (13)

This should be compared with the ML classifier in (7).

A. Consistency of Pseudo-Bayes Classifiers.

In practice our task is to identify the specific topology
giving rise to a set of measured data. When no prior distri-
bution is specified, the concept of the Bayes classifier, as
the maximizer of the probability of correct classification,
does not make sense, because “the” probability of correct
classification is not defined. Nonetheless it may be conve-
nient to construct a pseudo-Bayes classifier by choosing a
distribution � on

�
, which plays the role of a prior, and

forming the classifier in (10), which we now denote by
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Fig. 5. Network-level simulation topology for ns. Links are of two

types: edge links of 1Mb/s capacity and 10ms latency, and interior
links of 5Mb/s capacity and 50ms latency.

�� � . Classifiers constructed in this way are also consistent
under a mild condition.

Theorem 9: Let � be a prior distribution on
�

, and as-
sume that � � � � � lies in the support of � . Then �� � is con-
sistent in the frequentist sense, i.e.,

� � � 	 
 �� � �� � 
 � �
as � � � .

VII. SIMULATION EVALUATION AND ALGORITHM

COMPARISON

A. Methodology.

We used two types of simulation to verify the accuracy
of the classification algorithms and to compare their per-
formance. In model-based simulation, packet loss occurs
pseudorandomly in accordance with the independence as-
sumptions of the model. This allows us to verify the pre-
diction of the model in a controlled environment, and to
rapidly investigate the performance of the classifiers in a
varied set of topologies.

This approach was complemented by network-level
simulations using the ns [13] program; these allow
protocol-level simulation of probe traffic mixed in with
background traffic of TCP and UDP sessions. Losses are
due to buffer overflow, rather than being generated by a
model, and hence can violate the Bernoulli assumptions
underlying the analysis. This enables us to test the robust-
ness to realistic violations of the model. For the ns simu-
lations we used the topology shown in Figure 5. Links in
the interior of the tree have higher capacity (5Mb/sec) and
latency (50ms) than those at the edge (1Mb/sec and 10ms)
in order to capture the heterogeneity between edges and
core of a wide area network. Probes were generated from

node 0 as a Poisson process with mean interarrival time
16ms. Background traffic comprised a mix of infinite FTP
data sources connecting with TCP, and exponential on-off
sources using UDP. The amount of background traffic was
tuned in order to give link loss rates that could have sig-
nificant performance impact on applications, down to as
low as about 1%. One strength of our methodology is
its ability to discern links with such small but potentially
significant loss rates. In view of this, we will find it con-
venient to quote all loss rates as percentages.

B. Performance of Algorithms Based on Grouping

B.1 Dependence of Accuracy on Threshold � .

We conducted 100 ns simulations of the three algo-
rithms BLTP,BLTC and GLT. Link loss rates ranged from

� � � � to � � � � � on interior links; these are the links that
must be resolved if the tree is to be correctly classified. In
Figures 6–11 we plot the fraction of experiments in which
the topology was correctly identified as a function of the
number of probes, for the three algorithms, and for se-
lected values of � between � � � � � and � � . Accuracy is
best for intermediate � , decreasing for larger and smaller
� . The explanation for this behavior is that smaller val-
ues of � lead to stricter criteria for grouping nodes. With
finitely many samples, for small � , sufficiently large fluc-
tuations of the ��

cause erroneous exclusion of nodes.
By increasing � , the threshold for group formation is in-
creased and so accuracy is initially increased. However,
as � approaches the smallest interior link loss rate, large
fluctuations of the ��

now cause erroneous inclusion of
nodes into groups. When � is moved much beyond the
smallest interior loss rate, the probability of correct clas-
sification falls to zero. The behavior is different if we
ignore failures to detect links with loss rates smaller than
� . For � � � � and � � � � , in Figure 12 and 13, re-
spectively, we plot the fraction of experiments in which
the pruned topology � 	 was correctly identified for the
three algorithms. Here the accuracy depends on the rela-
tive values of � and the internal link loss rates. In these
experiments, the actual loss rates was often very close to

� � , so that small fluctuations results in erroneous inclu-
sions/exclusions of nodes which accounts for the signif-
icant fraction of failures for � � � � . In Section VIII-B
we shall analyze this behavior and obtain estimates for the
probabilities of misclassification in the regimes described.
We comment on the relative accuracy of the algorithms
below.

B.2 Dependence of Accuracy on Topology.

We performed 1000 model-based simulations using
randomly generated 24-node trees with given maximum
branching ratios 2 and 4. Link loss rates were chosen
at random in the interval 
 � � � � � � 
 . Figure 14 shows
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the probability of successful classification for BLTP( � ),
BLTC( � ) and GLT( � ) for � � � � � � � . In both cases
this grows to � , but convergence is slower for trees with
higher branching ratios. We believe this behavior occurs
due to the larger number of comparisons of values of ��

that are made for trees with higher branching ratio, each
such comparison affording an opportunity for misclassifi-
cation.

B.3 Comparison of Grouping Algorithm Accuracy.

In all experiments reported so far, with one exception,
the accuracies of BLTP and GLT were similar, and at
least as good as that of BLTC. The similar behavior of
BLTP and GLT is explained by observing that the two
algorithms group nodes in a similar manner. In BLTP,
a link is pruned from the reconstructed binary tree if its
inferred loss rate is smaller than � . In GLT, a node is
added to a group if the estimated common loss of the aug-
mented group is within � of the estimated common loss of
the original group. The operation of BLTC is somewhat
different, checking all possible pairs amongst candidate
nodes for grouping. Incorrect ordering in any test can re-
sult in false exclusion from a sibling set. We observe also
that the performance gap between BLTC and the other
algorithms is sensitive to the value of � and to the branch-
ing ratio. The exceptional case in which BLTC performs
better than the other algorithms is in the inference of bi-
nary trees: here BLTC performs slightly better because of
the stricter grouping condition is employs, making it less
likely to group more than two nodes.

B.4 Computational Complexity of Grouping Algorithms.

Of the two best performing grouping algorithms,
namely BLTP and GLT, we observe that BLTP has
smaller computational complexity for several reasons.
First, ��

is given explicitly for binary groups, whereas

generally it requires numerical root finding. Second,
although the algorithms have to calculate ��

for up to� � 	 
 � � groups, in typical cases GLT requires additional
calculations due to the larger sibling groups considered.
Thirdly, observe that each increase of the size of sets con-
sidered in GLT is functionally equivalent to one pruning
phase in BLTP. Thus in GLT, the threshold � is applied
throughout the algorithm; in BLTP it is applied only at
the end. We expect this to facilitate adaptive selection of
� in BLTP. Comparing now with BLTC, we observe that
this algorithm requires, in addition to the calculation of
shared losses, the computation of a maximal connected
subgraph, an operation that does not scale well for large
numbers of nodes. For these reasons we adopt BLTP
as our reference grouping algorithm since it is the sim-
plest and has close to the best accuracy. In the next sec-
tion, we compare its performance with that of the ML and
Bayesian classifiers.

C. Comparison of BLTP with the ML and Bayesian Clas-
sifiers

C.1 Complexity.

In this section we compare our reference grouping al-
gorithm, BLTP, with the ML and Bayesian classifiers.
Here we consider the simplest implementation of these
classifiers whereby we proceed by exhaustive search of
the set � � 
 � of all possible topologies during evaluation
of the maxima (7) and (13). By contrast, all the grouping
algorithms proceed by eliminating subsets of � � 
 � from
consideration; once a set of nodes is grouped, then only
topologies which have those nodes as siblings are consid-
ered.

The Bayesian classifier further requires numerical inte-
gration for each candidate topology. In order to reduce its
complexity we took the prior for the link rates to be uni-
form on the discrete set 
 � � � � � � � � � � � , with all topolo-
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Fig. 15. ML AND BAYESIAN CLASSIFIER: The four possible topologies with three receivers.

gies equally likely; we also precomputed the joint dis-
tributions � � � � � � � � . Due to these computational costs,
we were able to compare BLTP with the ML classifier
for only up to five receivers, and restricted the Bayesian
classifier to the smallest non-trivial case, that of three re-
ceivers. The four possible three-receiver trees are shown
in Figure 15. In this case, the execution time of the
Bayesian classifier was one order of magnitude longer
than that of the ML classifier, and about two orders of
magnitude longer than that of BLTP.

C.2 Relative Accuracy.

We conducted 10,000 simulations with the loss tree
� � � � � selected randomly according to the uniform prior.
As remarked in Section VI, the Bayesian Classifier is, by
definition, optimal in this setting. This is seen to be the
case in Figure 16, where we plot the fraction of experi-
ments in which the topology was incorrectly identified as
function of the number of probes, for the different clas-
sifiers (for clarity we plot separately the curves for the
ML and � � 	 
 � � � classifiers). Accuracy of � � 	 


greatly
varies with � : it gets close to optimal for the intermedi-
ate value of � � 
 � � � , but rapidly decreases otherwise
as � approaches either 0 or the smallest internal link loss

rate. It is interesting to observe that the ML classifier fails
25% of the time. This occurs when � is the non-binary
tree at the left in Figure 15. The reason is that the like-
lihood function is invariant under the insertion of links
with zero loss. Statistical fluctuations present with finitely
many probes lead to tree with highest likelihood to be a
binary tree obtained by insertion of links with near-zero
loss. This behavior does not contradict the consistency
property of the ML classifier in Theorem 8; if links with
loss less than some � � 
 are excluded from considera-
tion, then for sufficiently large number of probes, the spu-
rious insertion of links will not occur.

The effect of these insertions can be suppressed by
pruning after ML classification. Setting ML � � � �

	 
 � � � � ML we find the accuracy almost identical with
that of BLTP( � � ; this is plotted in Figure 16(b). A more
detailed inspection of the experiments shows that BLTP
selects the maximum likelihood topology most of the
time.

In practice we want to classify a fixed but unknown
topology. In this context the uniform prior specifies a
pseudo-Bayesian classifier, as in Section VI. Note that
this classifier is not necessarily optimal for a fixed topol-
ogy. We conducted a number of experiments of 10,000
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simulations of the three algorithms with fixed loss trees.
The relative accuracy of the algorithms was found to vary
with both topology and link loss rates. However, in all ex-
ample we found a value of � for which � � � � � � 	 accuracy
either closely approached or exceeded that of the ML and
Bayesian classifiers. As an example, in Figure 17 we plot
the results for the first binary tree topology in Figure 15
with all loss rates equal to 
 � � but that of the sole inter-
nal link, which has loss rate 
 � . In this example, the ML
classifier is more accurate than the pseudo-Bayesian clas-
sifier. � � � � � � 	 accuracy improves as � is decreased, and
eventually, for � � � 
 � � � , it exceeds that of the pseudo-
Bayesian and ML classifier.

These experimental results are supported by approxi-
mations to the tail slopes of the log misclassification prob-
abilities, as detailed in Section VIII. For the same exam-
ple, we display in Figure 17 (right), the estimated experi-
mental and numerical approximated tail slopes of the ML

and BLTP classifiers. For a given classifier these agree
within about 25%. Finally, not reported in the Figure, we
also verified that the ML( � ) classifiers provide the same
accuracy as � � � � � � 	 .

D. Summary.

Whereas the Bayesian classifier is optimal in the con-
text of a random topology with known prior distribu-
tion, similar accuracy can be achieved using BLTP( � ) or
ML( � ) with an appropriately chosen threshold � . In fixed
topologies, the corresponding pseudo-Bayes classifier is
not necessarily optimal. In the fixed topologies for which
we were able to make comparisons, better accuracy could
be obtained using BLTP( � ) or ML( � ) with an appropriate
threshold � . The accuracy of BLTP( � ) and ML( � ) are sim-
ilar: most of the time BLTP selects the ML topology with
maximum likelihood.

� � � �
has the lowest complexity, primarily because
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each grouping operation excludes subsets of candidate
topologies from further consideration. By contrast, the
ML and Bayesian classifiers used exhaustive searches
through the space of possible topologies. Since the num-
ber of possible topologies grows rapidly with the num-
ber of receivers, these methods have high complexity. A
more sophisticated search strategy could reduce complex-
ity for these classifiers, but we expect this to be effective
only if the number of topologies to be searched is reduced
(e.g. in the manner of BLTP). With larger numbers of re-
ceivers, any fixed reduction in the per-topology compu-
tational complexity would eventually be swamped due to
the growth in the number of possible topologies.

VIII. MISGROUPING AND MISCLASSIFICATION

In this section, we analyze more closely the modes of
failure of � � � �

, and estimate convergence rates of the
probability of correct classification. Since this classifier
proceeds by recursively grouping receivers, we can ana-
lyze topology misclassification by looking at how sets of
receivers can be misgrouped in the estimated topology �� .
We formalize the notion of correct receiver grouping as
follows. � �

will denote the set of receivers in the logical
multicast topology � .

Definition 1: Let � � 	 
 � be a loss tree with � �
� 
 	 � � , and let � �� 	 �
 � be an inferred loss tree with �� �
� �
 	 �� � . The receivers � � � � � descended from a node

� � � are said to be correctly grouped in �� if there exists
a node � � � �
 such that � � � � � � � �� � � � � . In this case we

shall say also that node � is correctly classified in �� .

Observe that we allow the trees rooted at � and � � to be
different in the above definition; we only require the two
sets of receivers to be equal.

Correct receiver grouping and correct topology classifi-
cation are related: in the case of binary trees, the topology
is correctly classified if and only if every node � � � is
correctly classified. This allows us to study topology mis-
classification by looking at receiver misgrouping. To this
end, we need to first introduce a more general form of the
function

� � � � to take into account expressions which may
arise as result of classification errors. Observe that in (6)
for � � 
 we defined � � � �� as � � � �� � � � � � � � � � � � �� �

� � � � � � � � � � � �� . In line 9 of BLT we have for the newly

formed node � , � � � � � � ! �  � � � �! � � � � � � � � �� , for some
subset " of � �

. By construction " is the set of receivers
of the subtree of �� rooted in � (which has been obtained
by recursively grouping the nodes in " ). It is clear that

" � � � � � � for some node � � 
 if the subtree has been
correctly reconstructed, but, upon an error, can be other-
wise a generic subset of � �

. Therefore, in BLT we need

to consider the following more general expression

�� � " # 	 " $ � % � & '� ( # � � � � ) � � � �� & '� ( # � � � � * � � � ��
+ & '� ( # � � � � � ) � � � �� � � � � � � � * � � � �� �

� �, � " # � � , � " $ �
�, � " # � - �, � " $ � . � , � " # / " $ � (14)

where " # and " $ are two non empty disjoint subsets of
� �

. Analogous to Theorem 4, 0 1 2 ' 3 4 �� � " # 	 " $ � �� � " # 	 " $ � , where

� � " # 	 " $ � % �
� 5 � � � � ) 6 � � 7 8 � 5 � � � � * 6 � � 7 8� 5 � � � � ) 6 � � � � � � * 6 � � 7 8

�
, � " # � , � " $ �, � " # � - , � " $ � . , � " # / " $ � 9 (15)

(15) can be regarded as a generalization of (5) where we
consider a pair of disjoint sets of receivers instead of pair
of nodes.

A. Misgrouping and Misclassification in BLT

We start by studying misgrouping in binary trees un-
der BLT. Consider the event : � that BLT correctly groups
nodes in � � � � � for some � � � . This happens if group-
ing operations do not pair any nodes formed by recursive
grouping � � � � � , with any nodes formed similarly from
the complement � � ; � � � � � , until no candidate pairs in

� � � � � remain to be grouped.
Lemma 1: A sufficient condition for correct grouping

of � is that

�� � " # 	 " $ 	 " � � % � �� � " # 	 " � � . �� � " # 	 " $ � < = (16)

for all � " # 	 " $ 	 " � � � � � � � � > � " # 	 " $ 	 " � � % " # 	 " $ ?
� � � � � 	 " � @ � � ; � � � � � 	 " � A� B 	 � � 7 	 � 	 � 	 " � A�
" 	 	 � A� 
 C .

Therefore : � � � � � D � � )
E � * E � 
 � � � � � � � � " # 	 " $ 	 " � �

where � � " # 	 " $ 	 " � � denotes the event that (16) holds.
This provides the following upper bound for probability
of misgrouping � , denoted by

F G� % � � 5 : �� 8 H �
� � )

E � * E � 
 � � � � � �
� 5 � � � " # 	 " $ 	 " � � 8 (17)

A.1 Estimation of Misclassification Probabilities.

We now consider the asymptotic behavior of F G� , first
for large + , then for small loss probabilities 
 � 7 . 
 .
Let I � � � % � & � J � 
 � , � � 
 , and set

� � � � � � 5 �� � � � 8 .
Theorem 10: Let � � 	 
 � be a canonical loss tree. For

each � � � , K + � � �� � " # 	 " $ 	 " � � . � � " # 	 " $ 	 " � � � ,
� " # 	 " $ 	 " � � � � � � � , converges in distribution, as the
number of probes + L M , to a Gaussian random
variable with mean 0 and variance � $ � " # 	 " $ 	 " � � , with
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � . Moreover, as� 	 � � 
 � � 
 � � 	 
 � � , then:
(i)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � 	 � � � ;
(ii) � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � 	 � � � ;
(iii)


 � �� � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � � � 	 � � � � � 	 � � � � (18)

where, for small enough
� 	 �

, the minimum is attained for
� � � � � � � � such that � � � � � � � � � � and � � � � � � � � �
� � � � .

Theorem 10 suggests we approximate
 ! � 	 � � � � � � � � � � "

by 
 � � # $ % � � � �
� � � � � � �
 � � �

� � � � � � � � , where 
 is the cdf of the

standard normal distribution. Thus for large $ and small� 	 �
, Theorem 10 and (17) together suggest that we ap-

proximate the misgrouping probability

& '� � � (
)

* + � (19)

Here we have used the fact that the & '� should be dom-
inated by the summand with the smallest (negative) ex-
ponent according to (18). Thus, asymptotically for many
probes, the probability of correctly identifying a group
of receivers descended from node � is determined by the
loss rate of link � alone, and is larger for lossier links.
Moreover, the stated relations between the minimizing

� � � � � � � � � � in (iii) say that the likely mode of failure is
to mistakenly group a child of � with the sibling of � .

In binary trees, the topology is correctly classified
when all groups are correctly formed. Hence & ', - . /

0 � � � & '� � 
 � � � � � & '� , and we expect 1 2 3 & ', - . to be
an asymptotically linear with function of $ with negative
slope 	 ' 4 � , where

	 ' � 
 � �� � � 	 � 5 (20)

Thus, in the regime considered, the most likely way
to misclassify a tree is by incorrectly grouping siblings
whose parent node 6 terminates the least lossy internal
link, mistakenly grouping the sibling of 6 with one of its
children.

We remark that the preceding argument can be formal-
ized using Large Deviation theory [5]. However, calcula-
tion of the decay rate appears computationally infeasible,
although one can recover the leading exponent 	 ' 4 � in
the small

� 	 �
regime.

A.2 Experimental Evaluation.

Although we have derived the slope 	 ' through a series
of approximations, we find that it describes experimen-
tal misclassification and misgrouping reasonably well.

We performed 10,000 experiments with an eight-leaf per-
fectly balanced binary tree. On each experiment, the loss
rates are a random permutation of the elements of the set

7 � 5 8 � � 9 � � 5 5 5 � � � � � 5 8 � : . In this way, the smallest loss
rate is fixed to � 5 8 � . In Figure 18 we plot the propor-
tion of links, that had loss rates greater than or equal to a
given threshold � , and were misclassified. As the number
of probes increases, misclassification is due exclusively
to misgrouping of low loss rate links: in this set of experi-
ments, no link with loss rate higher than � � was misclas-
sified once the number of probes exceeded 700.

According to (19), the different curves should be
asymptotically linear with negative slope approximately

� 4 � (then adjusted by a factor 1 2 3 � ; � since the logarithms
are to base 10). On the table in Figure 18(right) we dis-
play the estimated experimental and approximated slopes.
Agreement is good for � � � 5 8 � and 8 � . We believe
the greater error for � � � 5 8 � may be due to the de-
parture from the leading order linear approximations of
(18) for larger values of 	 
 ; also relatively few points are
available for estimation from the experimental curves. In
the figure, we also plot the log fraction of times BLT cor-
rectly identify the topology; as expected, this curve ex-
hibits the same asymptotic linear slope of the fraction of
misgrouped links, i.e., the one for � � � � .

B. Misgrouping and Misclassification in BLTP � � �
We turn our attention to the errors in classifying gen-

eral trees by the reference algorithm BLTP( < ). In the fol-
lowing, without loss of generality, we will study the er-
rors in the classification of the pruned tree � = � � 	 � � �

>  � < � � = � 	 � , with = � � � ? � � @ � � , under the assumption
that < A� 	 
 , B C D . This will include, as a special case,
when < is smaller than the internal link loss rates of the
underlying tree, i.e., when = � � = , the analysis of the
misclassification of = . D � � ? � E � 7 � � 9 : � F G � � will
denote the set of nodes in = � terminating internal links.

Let � H= � H	 � denote the tree produced by I J > , the final
estimate H= � is obtained from H= by pruning links whose
loss rate is smaller or equal than < , i.e., � H= � � H	 � � �

>  � < � � H= � H	 � . In contrast to the binary case, incorrect
grouping by BLT may be sufficient but not necessary for
misclassification. For I J >  � < � , incorrect classification
occurs if any of the following hold:
(i) at least one node in = � is misclassified in H= � ;
(ii) >  � < � prunes links from H= that are present in = � ; or
(iii) >  � < � fails to prune links from H= that are not present
in = � .
Observe that (i) implies that a node � such that 	 � / < can
be misclassified and still H= � � = � provided the all the
resulting erroneous links are pruned.

We have approximated the probability of errors of type
(i) in our analysis of BLT. Errors of type (ii) are excluded
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Fig. 18. MISCLASSIFICATION AND MISGROUPING IN BLT. LEFT: fraction of links misclassified with loss � � , for � � � � � � � � � � � � � � � 	 � � � .
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if for all � � � 
 :

�� � � � � � � � � � � 	 
 � � �
 � � � � � � � � � 
 � � � 	 
 � �
 � � � � � � 
 � �
(21)

for all � � � � � � � � � 
 � 
 � � 
 , since this condition implies
that all estimated loss rates of links in the actual tree
are greater than 	 . Errors of type (iii) are excluded if�
 � � � � � � 
 � �
 � � � � � � 
 � � and �
 � � � � � � � � � 
 � � �
	 
 � �
 � � � � � � 
 � � , or if �
 � � � � � � 
 � �
 � � � � � � 
 � �
and �
 � � � � � � � � � 
 � � � 	 
 � �
 � � � � � � 
 � � for all

� � � � � � � � � 
 � 
 � 	 
 where 
 � 	 
 � � � � � � � � � � � 
 � � � �
� � � � �� � � � � � � � � � � � �� � � � � � � � � �
� � 
 � �  � � 
 � � ! � � � � � � � � � 
 " �  � � 
 ! � � �

� � � � � � # �  � � 
 " � � � � � � 
 # . The latter conditions
ensure that all the links in the binary tree produced by
BLT, which are either results of node misgrouping or cor-
responding to fictitious links due to binary reconstruc-
tion, have estimated loss rate less than or equal to 	 , and
are hence pruned. Summarizing, let � � � � � � � � � � � 	 
 be
the event that (21) holds for a given � � � � � � � � � 
 , and

$ � 	 
 the event that the topology is correctly classified.

Then $ � 	 
 � � � % & � � ' � � � � � � ( ) ) *� � 	 
 
 � � ( ) ) ) * � 	 

where � ( ) ) *� � 	 
 � � ( � +

, � - , � � * % � ( � * � � � � � � � � � � � 	 

and � ( ) ) ) * � 	 
 � � ( � +

, � - , � � * % � ( 
 * � � � � � � � � � � � 
 �
� � � � � � � � � � � 	 
 � 
 � � � � � � � � � � � � 
 � � � � � � � � � � � � � 	 
 � 
 .
Consequently, we can write a union bound for the proba-
bility of misclassification:

. /0 1 2 � ( 
 * � � . 3 $ � 	 
 � 4 (22)

� �
� % � � � 5 3 � �� 4 6 5 3 � ( ) ) *� � 	 
 � 4 � 6 5 3 � ( ) ) ) * � 	 
 � 4

and each term in (22) can in turn be bounded above by
a sum similar to the RHS of (17). For the last term, in
particular, observe that

� ( ) ) ) * � 	 
 � � � ( � +
, � - , � � * % � ( 
 * � � � � � � � � � � � 
 � � (23)

� � � � � � � � � � � 	 
 
 � � � � � � � � � � � � 
 � � � � � � � � � � � � 	 
 

" � ( � +

, � - , � � * % � ( 
 * � � � � � � � � � � � � 	 
 � � � � � � � � � � � � 	 
 

� � ( � +

, � - , � � * % � ( 
 * � � � � � � � � � � � 	 
 �

so that
5 3 � ( ) ) ) * � 	 
 � 4 � 7 ( � +

, � - , � � * % � ( 
 * � � � � � � � � � � � 	 
 .

B.1 Misclassification Probabilities and Experiment Du-
ration.

We examine the asymptotics of the misclassification
probability . /0 1 2 � ( 
 * for large 8 and small

� 9 �
, by the

same means as in Section VIII-A. This amounts to find-
ing the mean

� � � � � � � � � � � 	 
 and asymptotic variance
 � � � � � � � � � � � 	 
 of the distribution of �� � � � � � � � � � � 	 
 ,
then finding the dominant exponent

� � :  � over the var-
ious � � � � � � � � � 
 . Let 9 / � 	 
 � ; < = ) % � � 9 ) denote the
smallest internal link loss rate of > 
 larger than 	 and

9 ! � 	 
 � ; ? @ ) % � � � � 9 ) the largest internal link loss rate
of > smaller than 	 or 9 ! � 	 
 � � if no such loss rate ex-
ists (which occurs when 	 is smaller than all internal links
loss rate). The proof of the following result is similar to
that of Theorem 10 and is omitted.

Theorem 11: Let � > � 9 
 be a canonical loss tree. For
each � � 	 A � , � � � � � � � � � 
 � � ) % � � 
 � � 
 �

 � 	 
 , B 8 C � �� � � � � � � � � � � 	 
 � � � � � � � � � � � � 	 
 
 con-
verges in distribution, as the number of probes 8 D

E , to a Gaussian random variable with mean 0 and
variance  � � � � � � � � � � � 	 
 . Furthermore, as

� 9 � �
; ? @ � % & 9 � D � and 	 : � 9 � D " � � � � E 
 ,

(i)
� � � � � � � � � � � 	 
 � F � G � � � � � � 
 
 � F � G � � � � � � 
 
 �

	 6 # � � 9 � � 
 ;

(ii)  � � � � � � � � � � � 	 
 � H F � G � � � � � � 
 
 � F � G � � � � � � 
 
 H 6# � � 9 � � 
 ;
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(iii) If � � � � � � � � � � � � � � � , � � � � ,

	 
 �� � 

� � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �
� � � � � 	 � 	 � �

(24)
and

	 
 �� � 
 � 	 
 �� � 

� � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � � (25)

� � � � � � � � � � �
� � � � � � � � 	 � 	 � � �

If � � � � � � � � � � � � � � � ,

	 
 �� � 

� � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � � (26)

� � � � � � � 	 � 	 � � if � 
 � � � � �� � �
� � � � � � �� � � � � � � � 	 � 	 � � if � 
 � � � � �

In (27) above, for clarity we distinguish the expressions
for � 
 � � � � � and � 
 � � � � � . Observe that the result for

� 
 � � � � � in (27) can be actually obtained by taking the
limit of the expression for � 
 � � � � � , which is of the form

� � � � � 
 � � � � � � � � 	 � 	 � � � � � � 
 � � � � � � 	 � 	 � � � .

Using the same reasoning as was used in Section VIII-
A, we expect that the logarithms of the probabilities of
errors of type (i), (ii) and (iii) to be asymptotically lin-
ear in the number of probes � , with slopes that behave
respectively as

� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � (27)

� � � � � � � �
� � � � � 	 � 	 � � if � 
 � � � � �� � �

� � � � � � �
� � � � � � if � 
 � � � � �

The dominant mode of misclassification is that with the
lowest slope in (27), which then dominates the sum in
(22) for large � . Hence we approximate the misclassifi-
cation probability to leading exponential order by

 �! " # � � � � � � � � $ � � � � � � � � % & ' � � % & & ' � � % & & & ' � � (28)

Since � � � � ( � � � � � , type (ii) errors always dominate type
(i). Between type (ii) and (iii), the prevailing type of er-
rors depends on the relative magnitude of � � � � � , � 
 � � �
and � , which satisfy � 
 � � � ) � ) � � � � � . Type (ii) be-
comes prevalent as � * � � � � � since then � � � � � * � ; sim-
ilarly, type (iii) dominates as � * � 
 � � � . Thus, � should
be chosen large enough to avoid the type (iii) errors, but
small enough so that the probability of type (ii) does not
become large. Unfortunately, this is not possible unless
information on the actual link loss rates is available. We
believe, nevertheless, that this does not represent a prob-
lem in practice. Indeed, as the analysis above indicates,
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Fig. 19. MISCLASSIFICATION AND MISGROUPING IN � � �  + , - :

(a) fraction of misclassified links with loss ! " , for " .# $ % & ' ( $ % ( ' # $ ' ) ' ( $ ; (b) fraction of misclassified trees for , .# ' * $ % # ' & $ % # ' + $ % # ' , $ .

for enough large � , the most likely way / 0 1 2 � � � misclas-
sify a tree is by either pruning the link which the least loss
rate higher than � (a type (ii) error) or by not pruning that
with the the largest loss rate smaller than � (a type (iii)
error); either way, the resulting inferred tree would differ
from the actual by the at most one link, approximatively,
that with the loss rate closest to � .

The foregoing arguments allow us to also estimate the
number of probes - required for inference with misclas-
sification probability . in a tree with minimum link loss
rate � � . This is done by inverting the approximation (28)
to obtain that - is approximately

� � � / � � � 0 1 2 3� � �
� / � � � � � if � 
 � � � � �

� � 	 3 4 4 � / � � �� � �
� / � � � � � �

� � � � �� � �
� � � � � � � 5 5 6 7 . if � 
 � � � � �

(29)
Note that for / 0 1 , or when � 6 � � , this reduces to the
simple form - � � � 5 6 7 � . � � � � .
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We conclude by observing that in the above analysis,
we have implicitly assumed that � � �� � . Nevertheless,
for large enough � , � � � � which corresponds to the
case when � � is a degenerate tree where all leaf nodes
are siblings. In this case, it is clear that misclassification
occurs only because of type (iii) errors. The misclassifi-
cation analysis for this special case can then be obtained
by taking into account type (iii) errors alone.

B.2 Experimental Evaluation.

We performed 10,000 experiments in a 21 node tree
with mixed branching ratio 2 and 3. On each experiment,
the loss rates are a random permutation of the elements
of the set � � � 	 � 
 � � 
 � � � 
 � � 	 � 
 � � � � , thus having the
same smallest link loss as in the experiments for BLT. In
Figure 19 we plot the fraction of links, that had loss rates
greater than or equal to a given threshold � , and were mis-
classified. These appear very similar to those for BLT in
Figure 18. In Figure 19(b) we also plot the fraction of
misclassified trees using 
 � � � � � � for different values of
� , all smaller than the smallest loss rate of � � 	 � . With this
choice, � � � � � � � and � � � � � � � � 	 � . As expected, ac-
curacy is best for intermediate � . The difference in shape
between the last and the first three curves indicates the
change between the two different regimes of misclassi-
fication. For � smaller than � � � � , misclassification is
dominated by erroneous exclusion of nodes from a group,
while for � � � � � � , misclassification is mostly deter-
mined by erroneous pruning of the link with the smallest
loss rate (which is � � 	 � ) because of statistical fluctuation
of its inferred loss rate below � . In the latter case, we can
use (27) to compute the tail slope obtaining � � � � � � � � ,
in good agreement with the estimated experimental slope
which is � � � � � � � � .

B.3 Asymptotic Misclassification Rates for the ML-
Classifier

We sketch how the theory of large deviations [5]
can be used to bound the asymptotic probability of
misclassification by the ML estimator. The expres-
sions obtained here were used to determine the ML tail
slopes in the table in Figure 17. First, observe that� � � � � �� 	 
 �� � � � � � �� � � � � � � �� 	 
 � 
 � . For


 �� � , each term in this sum can be bounded above by� � � � � � � � � � � � � �  � !" �  � � # $ " %
& 
 
 � ' � ( � � � , where

� � ) & 
 
 � ' � � * + , � � � ) & 
 
 � ' � - � � ) & � 
 � � � and � � ) & � 
 � �
the probability of the outcome ) . / � � � 
 � � 0 under
the loss tree � � 
 � � . Let � ! � � �  � !" �  � �

1 2 3 denote the
empirical distribution of the first � quantities # $ " % (here

� � is the unit mass at ) ), and for each 
 and � ' . � �
let � � � � � � � � . �  � / � 4 � � � � � � ) & 
 
 � ' � � � ) � 5 � �
(here �  � / � is the set of probability measures on / ) and
set � � � � � � � � � � � � � �

. Since the � � # $ " % 
 
 
 � ' � are IID

random variables, we can use Sanov’s Theorem [5] to
conclude that

* 6 7 � � �
! 8 9

�
� * + , � � � � � �� 	 
 � 
 �

: * 6 7 � � �
! 8 9

�
� * + , � � � � � � ! . � � �

: ; 6 <  ! � " � # � � = > � ? & � 
 � � � � (30)

Here, for � 
 $ . �  � / � , # � � = $ � �
� � � � � � ) � * + , � � � ) � - $ � ) � � is the Kullback-Leibler “dis-
tance”, or entropy of � relative to $ . By further minimiz-
ing the right-hand term of (30) over all 
 �� � , we obtain
an asymptotic upper bound for the decay rate of the mis-
classification probability as � increases. For each 
 , the
minimization can be carried out using the Kuhn-Tucker
theorem; we use the form given in [15].

We mention that a lower bound of the following form
can be found:

* 6 7 6 <  ! 8 9
�

� * + , � � � � � �� 	 
 �� � � 5
; 6 <  � # � 
 ' 
 � ' = � 
 � � 4 
 ' �� � 
 � ' . � � � � (31)

IX. SUMMARY AND CONCLUSIONS

In this paper we have proposed and established the con-
sistency of a number of algorithms for inferring logical
multicast topology from end-to-end multicast loss mea-
surements. The algorithms fall in two broad classes: the
grouping algorithms (BLTP, BLTC and GLT), and the
global algorithms (ML and Bayesian).

The computational cost of the grouping approaches
is considerably less for two reasons: (i) they work by
progressively excluding subsets of candidate topologies
from consideration while the global algorithms inspect all
topologies; and (ii) their cost per inspection of each poten-
tial sibling set is lower. Of the grouping algorithms, the
BLTP approach of treating the tree as binary then pruning
low loss links is simplest to implement and execute.

Of the algorithms presented, only the Bayesian is able
to identify links with arbitrarily small loss rates. All the
other classifiers require a parameter � ( � that acts as a
threshold: a link with loss rate below this value will be
ignored and its endpoints identified. The threshold is re-
quired in order that sibling groups not be separated due
to random fluctuations of the inferred loss rates. How-
ever, we do not believe that the necessity of a threshold
presents an obstacle to their use in practice, since it is
the identification of high loss links that is more important
for performance diagnostics. In practice we expect � to
be chosen according to an application-specific notion of a
minimum relevant loss rate.

By construction, the Bayesian classifier has the great-
est accuracy in the context of classification of topologies
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drawn according to a known random distribution. How-
ever, the performance gap narrows when classifying a
fixed unknown topology, and in fact the Bayesian clas-
sifier has slightly worse performance than the others in
this context. We conclude that BLTP offers the best per-
formance, having the lowest computational cost for near
optimal performance.

This selection of BLTP( � ) motivates analyzing its error
modes, and their probabilities. Although the analysis is
quite complex, a simple picture emerges in the regime of
small loss rates � � and many probes � , and errors are
most likely to occur when grouping the children of the
node � that terminates the link of lowest loss rate.

The leading exponents for the misclassification that
were calculated in Section VIII can be used to derive
rough estimates of the number of probes required in prac-
tice. Consider the problem of classifying a general topol-
ogy whose smallest link loss rate in 1%. According to
(29), the number of probes required for a misclassification
probability of � � (using � � � � 	 � ) is about 4000. (In a
binary topology using BLT the number required drops to
about 1000). Using small (40 byte) probes at low rate of
a few tens of kbits per sec, measurements involving this
many probes could be completed within only a few min-
utes.

We note that the grouping methods extend to a wider
class of estimators by replacing the shared loss estimate
with any function on the nodes (i) that increases on mov-
ing away from the root; and (ii) whose value at a node can
be consistently estimated from measurements at receivers
descended from that node. Examples of such quantities
include the mean and variance of the cumulative delay
from the root to a given node; see [6] and [11].

Finally, a challenging problem is to take the resulting
logical multicast trees and mapping the constituent nodes
onto physical routers within real networks. This remains
beyond our capability at this time.

X. PROOFS OF THE THEOREMS

The proof of Proposition 1 depends in the following
Lemma.

Lemma 2: Let � 
 � � for � � � 
 � 
 � � � 
 � ; let � be such
that � � � 
 � 
 � � � � 
 � 
 ; and set � � � � � � � � � � � � � �� 
 � � � � 
 � � � . Then the equation � � � � � � has a unique
solution � � � � . Furthermore, given � � � then � � � � � �
if and only if � � � � .
Proof of Lemma 2: Set � 
 � � 
 � � � � so that

� 
 � 
 � � . Let � � � � � � � � � � � , � � � � � � � 
 � � � � 
 � �
and � � � � � � � , so that � � � � � � � � � � � . We look
for zeroes of � . For � � � � 
 � � �   � � � � � � , �   � � � � �� � � � � � � � 
 	 
 � � � � � � � 
 	 
 � � � � 
 � � where 	 
 � � � �� 
 � � � � � 
 � � � � . Hence � is strictly concave on � � 
 � � .
Now � � � � � � , � � � � � � and �  � � � � � � ! � 
 � 
 � � .

So since � is concave and continuous on � � 
 � � there must
be exactly one solution � � to � � � � � � for � � � � 
 � � and
hence one solution � � to � � � � � � for � � � . Further-
more, given � � � � 
 � � , � � � � � � iff � � � � and hence
given � � � , � � � � � � iff � � � � .

Proof of Proposition 1: Clearly � � � � " # $ � % � � $ � & � �
� � " # $ � & � in a canonical loss tree and hence (i) and (ii)
follow from Lemma 2. (iii) is then a restatement of (2),
established during the proof of Prop. 1 in [3].

(iv) Write &  � & ' ( % ) . We refer to Figure 1, where
we show the logical multicast subtree spanned by % 
 &
and their descendents, together with * � & � 
 * � &  � and the
root � . From (i),

+ � &  � is the solution of the equation�
� �

$ � &  + � &  � � �
�

� �
$ � % �+ � &  � � ,

- " #

�
� �

$ � � �+ � &  � � �
(32)

and
+ � & � is the solution of

� � � $ � & � � + � & � � � ,
- " #

� � � $ � � � � + � & � � (33)

Now suppose that
+ � & � . + � &  � . We shall show

that this leads to a contradiction. Since then
+ � & � .+ � &  � � $ � &  � , we can apply (i) and (ii) to (32) to ob-

tain

� �
$ � &  �+ � & � .

�
� �

$ � % �+ � & � � ,
- " #

�
� �

$ � � �+ � & � �
�

�
� �

$ � % �+ � & � � �
� �

$ � & �+ � & � � 
 (34)

with the right-hand equality obtained by substitution of
(33). Applying (2) at the node * � &  � we have

� �
$ � &  �

/ � * � &  � � �
�

� �
$ � % �

/ � * � &  � � �
� �

$ � & �
/ � * � &  � � � �

(35)
Since the assumption

+ � & � . + � &  � implies that+ � & � � $ � &  � , then comparing (34) with (35) and using
(ii) again we find / � * � &  � � 0 + � & � � / � * � & � � . This
is a contradiction since * � &  � 1 * � & � and 
 canonical
implies / � * � &  � � � / � * � & � � .

While proving that DLT reconstructs the tree correctly,
we find it useful to identify a subset 2 of 3 as a stra-
tum if ( 4 � % � � % � 2 ) is a partition of 4 . If DLT
works correctly, then before each execution of the while
loop at line 4 of Figure 2, the set 4  is a stratum and the
set � 3  
 5  � of nodes and links is consistent with the ac-
tual tree � 3 
 5 � in the sense that it decomposes over sub-
trees rooted at the stratum 4  , i.e., 3  � ' � " 6 7 3 � % � and

5  � ' � " 6 7 5 � % � . This is because any correct iteration of
the loop that groups the children of node % has the effect
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of joining subtrees rooted at nodes in � � � � , while modify-
ing the partition � � � � � � � � � � 	 by replacing elements

� � � 
 � � 
 � � � � 	 � by � � � � . The proof of Theorem 2 de-
pends on the following Lemma that collects some proper-
ties of strata.

Lemma 3: If � is a stratum in a logical multicast tree
� � 
 � � then
(i) If � � � then no ancestor or descendant of � lies in � .
(ii) Exactly one of the following alternatives applies to
each non-root node � in � : (a) � � � ; (b) � has an ances-
tor in � ; (c) � has at least two descendants in � .
Proof of Lemma 3: (i) If 
 
 � 
 � � and 
 � � then � � 
 � �

� � � � , contradicting the partition property. (ii) If � �� � ,
then there exists 
 � � obeying one of the alternatives


 � � or 
 � � , for otherwise � � 
 � does not overlap
with any element of the partition � � � 
 � � 
 � � 	 . By
(i), the alternatives are exclusive. There exists 
 � � with


 � � , it is unique, by (i). If not, there exists 
 � �
with 
 � � . In this case � cannot be a leaf node and
hence � � 
 � � � � � � since � has branching ratio at least
2. Hence there must be at least one more node 
 � � �
with 
 � � , since otherwise the partition � � � 
 � � 
 � � 	
would not cover � .

Proof of Theorem 2: (i) Suppose that DLT yields an in-
correct tree, and consider the first execution of the loop
during which � � � 
 � � � becomes inconsistent. Inconsis-
tency could occur for the following reasons only:
1. If the minimizing pair � � � 
 � � 	 are not siblings. Then
there exists � � � � � � 
 � � � that is the parent of either � �
or � � ; say � � � � . Since � � � � � , by Lemma 3(i) no
ancestor of � � – including � – can be in � � . Hence by
Lemma 3(ii), there must be at least one node � �� in addi-
tion to � � with the property that � �� � � and � �� � � � .
Since the loss tree is canonical,

� � � � 
 � �� � � � � � � �
� � � � � � 
 � � � � � � � � � 
 � � � , contradicting the minimality
of

� � � � 
 � � � . Hence the minimizing pair are siblings.
2. If not all sibling nodes of � � 
 � � are members of � � .
Let there be a sibling � of � � that is not in � � . Since

� � � � � , then by Lemma 3(i) no ancestor of � � –
and hence no ancestor of its sibling � – can lie in � � .
Since � itself is not in � � , by Lemma 3(ii), there exist

� � 
 � � � � � with ancestor � . Since the loss tree is canon-
ical,

� � � � 
 � � � � � � � � � � � � � � � 
 � � � � � � � � � 
 � � � ,
contradicting the minimality of

� � � � 
 � � � . Hence all sib-
lings of � � 
 � � are members of � � .
3. If not all sibling nodes of � � 
 � � are included in � of
steps 5–7. This would violate Prop 1(iii).
4. If a node that is not a sibling of � � 
 � � is included in

� . This would violate Prop 1(iv).
(ii) Since (i) allows the reconstruction of the loss tree

from the outcome distribution, distinct loss trees can not
give rise to the same outcome distributions, and hence the
canonical loss tree is identifiable.

Proof of Theorem 3: Consider a maximal set � �
� � � 
 � � 
 � � � 
 � � 	 of siblings that is formed by execu-
tion of the while loop at line 6 in DLT; see Figure 2.
We assume the non-trivial case that �  � and as-
sume initially that � is unique. By Prop. 1(iii),

� � ! � is
minimal within � " # $ � � � � on any pair of nodes from

� " # $ � � � . The action of DBLT can be described iter-
atively over � � � % 
 & 
 � � � 
 � 	 as follows. After select-
ing � " � $ � � � " � $

� 
 � " � $� 	 in line 5, all pairs in � " � � � $ �
� � " � $ ' � " � $ � ( � � " � $ 	 minimize

� � ! � over all pairs in
� " � � � $ � � � " � $ ' � " � $ � ( � � " � $ 	 with the same min-
imum

� � � � . This is because � & ) * � � " � $ � � � � � � � �+ , - � " � $ � & ) * � � � � � � � � � where � � � � denotes the mem-

bers of � that are descended from � " � $ in the binary
tree built by DBLT. Hence � & ) * � � " � $ � � � � � � � � � & )
* � � " � $

� � � � � � � � � & ) * � � " � $� � � � � � � � and so
� � � " � $ � �� � � � by Prop. 1(i).

Thus for each step in DLT that groups the nodes in � ,
there are � ) & steps of DBLT that successively group
the same set of nodes. Since

� � � " � $ � � � � � � for all
� , each node 
 added in DBLT has . / � & , apart from
the last one. Therefore, 0 1 � % � acts to excise all links
between the binary nodes � " # $ 
 � � � 
 � " � $ ) & . Thus	 2 0 � 0 1 � % � 3 	 4 2 0 . If � in not unique, the same
arguments apply, except now there can be alternation of
grouping operations acting on different maximal sibling
sets.

Proof of Theorem 4: Since each 5* � � � is the mean of 6
independent random variables then by the Strong Law of
Large Numbers, 5 * � � � converges to 
 7 5* � � � 8 � * � � � al-
most surely as 6 9 : . In Theorem 1 of [3] it is shown
that

� � � � is a continuous function of � * � � � � � � 
 � * � � � �
� � � 	 	 , from which the result follows.

Proof of Theorem 5: Let � denote a generic binary sub-
set of � � that minimizes

� � ! � when DBLT is applied to
� ; 
 . � . Assume initially that the minimizing � is unique.
Since the loss tree is canonical,

� � � � � � � � � � for any
other candidate binary set � � ; by the convergence prop-
erty of Theorem 4, 5� � � � � 5� � � � � for all 6 sufficiently
large. Hence the nodes in � are grouped correctly.

But it may happen, by coincidence, that the minimizing
� is not unique. Then there are pairs � " � $ 
 � � � 
 � " � $ that
minimize

�
. Since the tree is canonical, then after each

� " � $ � � � has been grouped, the remaining pairs are still
minimizers of

� � ! � amongst all pairs of the reduced set
� � � ' � " � $ � ( � � " � $ 	 in line 10 of Figure 4. Hence DBLT
picks these pairs successively for grouping until all pairs
have been picked.

With BLT, the 5� � � " � $ � are no longer equal. But for
sufficiently large 6 they will still all be less than 5� � � � �
for any other candidate pair � � , by Theorem 4. Thus BLT
will successively group the pairs � " � $ 
 � � � 
 � " � $ in some
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random order that depends on the relative magnitude of
the �� � � � � � � . But the order is not important, since the
end result is just to have the pairs formed as DBLT would
have.

Proof of Theorem 8: It suffices to show that
� � 	 
 � �


 � � � � �� � � � � � � � � for each � � �� � , Let� � � � � � � � denote the probability of the outcome � �
� � � � � � under the loss tree � � � � � . Under our assump-
tions, if � � �� � , the Kullback-Leibler information� � � � � � � � � � � � � � � � � � � � � � � �  ! � � � " � � � � � # � � " � � � � � � � � �

(36)
is a continuous function of � � � � � � $

, and is strictly pos-
itive because of identifiability. Thus there is a number� % � such that

� � � � � � � � � � � � � � � � & � for all � � � � � � $ .
Now


 � � � � �� � � � � � � ' (37)


 � � � 	 ( � $ ) 
 �� $ 
 �
*


�
+

�  ! � � " � , �
� � � � � � �� � " � , � � � � � � & � � � -

Since � � � � � � $
, the density � � � � � � � � � � is bounded away

from zero, hence the conditions of Jennrich’s [8] uniform
strong law of large numbers are satisfied. Thus,


 � � �
-

almost surely,

�
*


�
+

�  ! � � " � , �
� � � � � � �� � " � , � � � � � � . / . � � � � � � � � � � � � � � � � ' . �

(38)
uniformly in � � � � � � $

, whence the RHS of (37) con-
verges to zero as * / 0 .

Proof of Theorem 9: Recall from the proof of Theorem 8
that the Kullback-Leibler information

� � � � � � � is a contin-
uous function of � � , and, because of identifiability, has a
unique minimum, namely 0, at � � � � . Given any neigh-
borhood � of � � �

, it follows that, for sufficiently small
1 % � , the set � � � � � � � � � � � � � � 2 1 � is contained in

� . Using Theorem 7.80 of Schervish [17], we have, for
* / 0 , � � � 3 � � . / � � 
 � . 4 - 5 - (39)

Consider the pseudo-Bayes classifier �� � , which now
takes the form

�� � � � � � 6 7 ! 	 6 8� ) � � � � � � � � � 9 � 3 � � - (40)

From (39) we obtain that,

 � � �

almost surely, � � � � � �� 9 � 3 � � . / � and � � � � � � : � 3 � � . / � for � �� � ,
whence �� � � � � � � for sufficiently large * ,


 � � �
almost

surely.

Proof of Lemma 1: Assume that a number of group-
ings have been formed, after which ; + � ; < are candidate

nodes descended from = , while ; � is some other candi-
date node not descended from = . Since the grouping thus
far is correct, ; � cannot be = or an ancestor of = , and
hence > � ; � � � ? � @ > � A > � � = � . Let ? B � > � � ; B � ,

C � � � � . All the ? B are disjoint. By arguments similar
to those used in the proof of Theorem 2,

� � � ; + � ; � � � �� � ? + � ? � � % � � ? + � ? < � � � � � ; + � ; < � � . Thus correct
grouping of ; + � ; < by BLT is guaranteed if (16) holds for
all � ? + � ? < � ? � � � � � = � .

Proof of Theorem 10: Since for each ? D > , �E � ? � is

the mean of i.i.d. random variables �F � , �� , the variables
G * H � �E . E � , �E � � �E � ? � � � � � , converge to a multivariate
Gaussian random variable as * / 0 . Since ��

is a dif-
ferentiable function  of � E , the Delta method insures that
the stated convergence holds.

To prove (i) observe that since 4 � ? + � � 4 � ? � � I 4 � ? + (
? � � then

� � ? + � ? � � � : � 4 � ? + ( ? � � � . Since ? + and ? <
may not satisfy 4 � ? + � � 4 � ? < � I 4 � ? + ( ? < � –this may
occur whenever there was a grouping error in any of
the steps that lead to the construction of node ? + and/or
node ? < –we need to explicitly write the expression for� � ? + � ? < � ,

� � ? + � ? < � �

 J K B ) � L " B � � M 
 J K B ) � N " B � � M
 J K B ) � L " B H K B ) � N " B � � M

� 
 J " ! � � L " � N � � � M
� 
 J K B ) � L " B � � 3 " ! � � L " � N � � � M
 J K B ) � L " B � � 3 " ! � � L " � N � � � � K B ) � N " B � � M

� : � 4 � ? + ( ? < � � # � � L
� � N � (41)

where # � � L
� � N � � � $ % & ' ( ) L

* ' O + + * ,
P

) L - ) N Q O + .$ % & ' ( ) L
* ' O + + * ,

P
) L - ) N Q O +

� & ' ( ) N * ' O + . .

Observe from Proposition 1(iv) that # � � L
� � N � ' � . Intu-

itively, the smaller # � � L
� � N � , the greater the error commit-

ted so far in classifying the subtree rooted at = . (i) then
follows as for

/ � / / � it is easy to verify that : � ; � �
� . 5 � ; � R 0 � / � / < � and 1 � � L

� � N � � � . 0 � / � / < � .
To prove (ii), a standard application of the Delta method
shows that the collection of G * � �� � ? + � ? < � . � � ? + � ? < � �
converge as * / 0 to a multivariate Gaussian random
variable with mean zero and covariance matrix

2 � � L
� � N � � � � 3 � � 4 � � �� � � $ � � 5

� � ? + � ? < �

5 E � ? � � � � � $ 5
� � ? � � ? 6 �

5 E � ? � � -
(42)

where � � � � $ � 7 � � J �F � , �� � �F � , �� $ M . Now, following the
same lines of Theorem 5 in [3], we have that � � � � $ �

5 � 4 � ? ( ? � � � R 0 � / � / < � , and
� 8 � � L

� � N �� � � � � � � � � L " � N � � � R0 � / � / < � by direct differentiation. Therefore, we have2 � � L
� � N � � � � 3 � � 4 � � � � � L " � N � � � � 3 " � 4 � R 0 � / � / < � . Hence,

� � S � � 9 � � 9 � � T U 	 
 � L �
� 3 


�

 � L �

� 3 
 � 	 
 � L �
� N 


�

 � L �

� N 
 (43)

� : 	 
 � L �
� N 


�

 � L �

� 3 
 � � S � ; � � T
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� � � � � � � � � � � � � � � � � � � � � � � � � � � 	 � 	 � �

Finally, (iii) follows as � � � � � � � � 	 
 
 � � � � � � � � �
�


 
 is
minimized when � � � � � � 	 
 � 
 and � � � � � �

�

 � � � 
 
 .
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Abstract

This paper describes a class of statistical estimators
of multicast tree topology based on end-to-end mul-
ticast traffic measurements. This approach allows the
determination of the logical multicast topology with-
out assistance from the underlying network nodes.
We provide five instances of the class, variously us-
ing loss or delay measurements. We compare their
accuracy and computational cost, and recommend
the best choice in each of the light and heavy traf-
fic load regimes.

1 Introduction and Motivation

The use of multicast shows great promise for deter-
mining internal network characteristics based solely
on end-to-end measurements. This is because multi-
cast introduces correlation in the end-to-end behav-
ior observed by different receivers within the same
multicast session. This correlation can be used to
estimate packet loss rates, [1], packet delay distri-
butions, [5], and packet delay variances, [4]. These
methods can be used as part of a multicast–capable
measurement infrastructure, such as NIMI (National
Internet Measurement Infrastructure) [9], for the pur-
pose of monitoring internal network behavior.

All of these multicast-based methods can be ap-
plied to end-to-end multicast observations made of
packets traversing a fixed, but arbitrary, topology.

�This work was supported in part by DARPA and the AFL
under agreement F30602-98-2-0238

yCorresponding Author: Tel. +1 973 370 8726; Fax +1 973
360 8050

Knowledge of the multicast topology is required in
order to apply the methods. Unfortunately, knowl-
edge of the tree topology is not always available.
This motivates the need for algorithms that can iden-
tify the topology of the multicast tree. Another mo-
tivation is that knowledge of the multicast topology
can be of use to multicast applications. For example
several reliable multicast protocols (e.g., RMTP [8])
rely on logical hierarchies based on the underlying
topology if possible. Other applications attempt to
group receivers that share the same network bottle-
neck, [10].

In this paper, we present a general framework
within which to develop algorithms for identifying
the multicast topology based on end-to-end observa-
tions. Once the topology has been identified, any of
the methods mentioned above for identifying inter-
nal network behavior can then be applied. The de-
velopment of an algorithm is based on the presence
of a packet performance measure that monotonically
increases as the packet traverses down the tree and
that can be estimated based on observations made at
the receivers. We provide additional constraints on
the measures such that the resulting algorithm can be
shown to be asymptotically consistent, i.e., it identi-
fies the correct topology almost surely as the number
of observations goes to infinity. Examples of perfor-
mance measures that yield such algorithms include
loss rate, delay variance, average delay, and link uti-
lization.

Several algorithms have been proposed for identi-
fying multicast topologies based on loss observations
made at receivers. For example, [10] presented an al-
gorithm for identifying a multicast tree when it is a
binary tree. [2] established the correctness of this al-
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gorithm and introduced several other loss-based al-
gorithms for identifying general trees. They con-
cluded that an algorithm that constructs a binary tree
and subsequently prunes branches whose loss rates
are close to zero was best suited for topology identifi-
cation. The framework presented in this paper comes
from the recognition that this last approach can be
applied to observations of other end-to-end measures
such as delays.

Topology discovery is an essential part of sev-
eral current measurement infrastructure projects, in-
cluding CAIDA, Felix, IPMA, NIMI and Surveyor;
see [3]. We contrast our approach with that of the
commonly used diagnostic tools traceroute and
mtrace [6] that discover physical topology. These
require cooperation from intervening nodes (in the
generation of ICMP messages, or in maintaining
counters) and their widespread use raises issues of
scaling in topologies with many leaves. The present
methods complement these, being able to discover
logical multicast topology and it changes without co-
operation from the network, using measurement traf-
fic whose volumes that scale well for larger topolo-
gies; see [2] for further discussion.

The paper is organized as follows. We introduce
our framework in Section 2 and provide conditions
under which the resulting algorithms are strongly
consistent. Applications to loss and delay measures
are presented in Section 3. In Section 4 we analyze
the probability of topology misclassification, asymp-
totically for large numbers of probes. Section 5 re-
ports on a simulation study on the effectiveness of
different algorithms obtained through this approach
and makes recommendations as to when they per-
form well. Section 6 concludes the paper.

2 A Framework for Topology Infer-
ence

Tree Model. The physical multicast tree comprises
actual network elements (the nodes), and the com-
munication links than join them. When a packet is
multicast to a set of receivers, only one copy of the
packet traverses each link of the tree; copies are cre-
ated at the branch points of the tree, one per outgoing
link. The logical multicast tree comprises the branch

points of the physical tree, and the logical links be-
tween them. The logical links comprise one or more
physical links. Thus each node in the logical tree, ex-
cept the leaf nodes and possibly the root, must have
2 or more children.

Let T � �V�L� denote a logical multicast tree
with nodes V and links L. We identify the root node
� as the source of probes, and R � V as the set of
leaf nodes (identified as the set of receivers). The
set of children of node j � V is denoted by d�j�.
Each node, k, apart from the root has a parent f�k�
such that �f�k�� k� � L. Define recursively the com-
positions fn � f � fn�� with f� � f . We will
sometimes refer to the link �f�k�� k� as simply link
k. Nodes are said to be siblings if they have the same
parent. If k � fm�j� for some m � N we say that j
is descended for k (or equivalently that k is an ances-
tor of j) and write the corresponding partial order in
V as j � k. a�i� j� will denote the minimal common
ancestor of i and j in the �-ordering. For k � V

we let T �k� � �V �k�� L�k�� denote the subtree of T
that is rooted at k, and set R�k� � R � V �k�.

Tree Marks. The experience of a multicast packet
on its passage down the tree is modeled by a random
process of marks x � �xk�k�V . Each mark xk takes
a value in a set X appropriate to the problem of inter-
est. xk specifies the experience of a packet travers-
ing link k. In the setting of packet loss, for example,
we take X � f�� �g, where xk � � indicates that a
packet present at node f�k� is successfully transmit-
ted to node k, while xk � � indicates that it would
be lost.

Composing Marks Along Paths. A path is a set
of contiguous links, identified by the ordered set of
link endpoints �k�� � � � � k�� where ki � f�ki���. We
will sometimes use the notation p�k� to denote the
path �k�� � � � � k�� where k� � � and k� � k. The ex-
perience of the multicast packet on a path is obtained
by composing the marks from each link on the path
to form a mark for the path. Composition is an as-
sociative and commutative binary operation � on X .
A path p � �k�� � � � � k�� has mark xp formed by
successively composing the marks of its constituent
links: xp � xk� � � � ��xk� . We assume that X con-
tains an identity z such that z�x � x for all x � X .
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In the example of loss we can compose link marks
using the minimum x� � x� � x� � x�. This mod-
els the physical property the loss occurs on a path
if it occurs for any link on the path. The identity is
z � �.

Measurements and Marks. We assume that the
individual marks xk are not directly knowable.
Rather, end-to-end measurements comprise the
marks xp�k� along paths terminating at leaf nodes
k � R. Our task will be to infer the underlying
topology from these path marks alone. This informa-
tion can also be used to to characterize the individual
links, by inferring the distribution of their link marks.

Mark Aggregation. We also equip X with an ag-
gregation operation that summarizes the experience
of packets over a set of possibly intersecting paths.
We restrict attention to binary trees. Aggregation is
then a binary operation � on X . The multicasting
property is reflected in composition � being distribu-
tive over aggregation �, i.e.,

�x� � x��� �x� � x�� � x� � �x� � x�� (1)

for any x�� x�� x� � X . The reason that this re-
lation holds becomes clearer if we consider a four-
node logical multicast tree with root � having a single
child �, the latter node having children �� � that are
leaves. Eq. (1) says that when calculating the aggre-
gate mark for intersecting paths ��� �� and ��� ��, we
can factor out the common mark on the common link
�. When dealing with loss, for example, we will take
aggregation as maximization, i.e. x��x� � x��x�.

Aggregating Receiver Marks. Nodes k � V n
�R � f�g� have two children, which we denote by
h�k� and h��k�. For each k � V n f�g we define
the aggregate marks over the paths to all receivers
descended from k recursively through

exk �
�

xp�k� k � Rexh�k� � exh��k� otherwise
� (2)

When � is associative (i.e. �m� � m�� � m� �

m� � �m� �m�� we can write exk � �j�R�k�xp�j�.
This is the case for loss, where exk is � if the packet

reaches some receiver descended from k and � oth-
erwise. However, we have one example where � is
not associative.

Mark Distributions. We assume that the marks
are independently distributed according to a mark
distribution � � ��k�k�V , where �k is the distribu-
tion of the mark xk. The distribution �p of the com-
posite mark of a path p � �k�� � � � � k�� is determined
by convolution in the usual way: for a measurable
subset B of X , �p�B� � ��k� � � � � � �k���B� ��R
x������x��B

�k��dx�� � � � �k��dx��. The joint distri-
bution of exk� � � � � � exk� will be denoted e�k������k� .
Deterministic Reconstruction of Binary Trees.
The classification of trees relies on being able to
identify certain characteristics of paths that do not
terminate at leaves from the characteristics of those
that do. Such a characteristic � will be termed
estimable; the precise definition is below. We
seek estimable characteristics that increase as paths
lengthen; this allows us to select as siblings those
nodes for which the characteristic � on the common
portion of the path from � is maximized.

Let T � �V�L� be a binary tree. Let � be a set
of probability distributions on X that is closed un-
der convolution, and denote by �V the correspond-
ing product distribution of marks on T . Let � be a
weakly continuous functional the set of measures on
X that takes values in some linear spaceQ. We equip
Q with the usual partial order, i.e., �qi� � �q�i� in Q
iff qi � q�i for all i. Let �z denote the distribution
which has unit mass at the composition identity z.

Definition 1 (i) � is called estimable if there ex-
ists a function 	 such that, for each � �
�V , and j� k � V with a�j� k� �� j� k,
���p�a�j�k��� � 	�e�j�k�.

(ii) � is called increasing if, ���z� � � � Q, and
for all � � �, ���p� � ���q� when p is a
proper subpath of q.

The condition ���z� � � says that a link whose
marks never change the marks of paths traversing it,
do not increase the value of �.

Given an estimable, increasing �, and a distribu-
tion �, write 	j�k � 	�e�j�k�. The topology can
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1. Input: The set of receivers R � fi�� � � � � irg and
the leaf mark distributions e�i������ir .

2. R� �� R; V � �� R�; L� � � ;
3. while jR�j � � do
4. select U � fj� kg � R� with maximal �j�k;
5. V � �� V � � fUg;
6. L� � L� � f�U� �� � � � Ug;
7. R� �� �R� n U� � fUg;
8. enddo
9. if �j�k � � do
10. V � �� V � � f�g ; L� � L� � f��� R��g ;
11. enddo
12. Output: tree �V �� L�� ;

Figure 1: Deterministic Binary Tree Classification
Algorithm (DBT).

be reconstructed from � as follows. The key ob-
servation from (ii) is that �j�k � �j��k� whenever
a�j� k� � a�j�� k��. Thus �j�k is maximized when
j� k are siblings in R. For if not, then one of the
receivers, say j, would have a sibling k� for which
�j�k� � �j�k. Thus the siblings can be identified on
the basis of leaf distributions alone. Substituting a
composite node that represents their parent and iter-
ating, should then reconstruct the binary tree. This
approach is formalized in the Deterministic Binary
Tree Classification Algorithm (DBT); see Figure 1.

DBT operates as follows. R� denotes the current
set of nodes from which a pair of siblings will be
chosen, initially equal to the receiver set R. We first
find the pair U � fj� kg that maximizes �j�k (line
4). This identifies the members of U as siblings, and
the set U is used to represent their parent. Corre-
spondingly, we add j� k to the list V � of nodes (line
5), we add �U� j�� �U� k� to the list L� of links (line
6), and replace j and k by U in the set R� of nodes
available for pairing in the next stage (line 7). This
process is repeated until all sibling pairs have been
identified (loop from line 3). Finally, we test in line
9 whether the last node grouped should be taken as
the root node. If the last node identified were not
the root node, equality in the test would contradict
the increasing property of �. Otherwise, we adjoin a
root node, and a link joining it to its single descen-
dant (line 10).

We say that DBT reconstructs the binary logical
multicast tree �V�L� if given the receiver set R and
the leaf mark distribution �p�R�, it produces �V�L�
as its output. Clearly this happens if and only if be-
fore each iteration of the while loop 3 in Figure 1,
�V �� L�� can be decomposed in terms of disjoint sub-
trees V � �

P
k�R� V �k� and L� �

P
k�R� L�k�.

These subtrees may just be trivial ones T �k� �

�fkg� �� comprising a root node k. We note also that
these trees cover R, i.e. R � �k�R�R�k�. These
properties hold before the first while loop, and hold
subsequently since each loop of a successful recon-
struction amalgamates binary subtrees rooted at sib-
lings.

Theorem 1 Let T be a binary tree, equipped with
an estimable and increasing function �. Then DBT
reconstructs T .

Proof of Theorem 1: Suppose the algorithm does
not reconstruct the tree. Then there must be an it-
eration of the while loop for which j and k in line
4 of Figure 1 are not siblings. Consider R�� V � at
the start of the first loop that this occurs. Let � be
the sibling of j. � �� R� since a�j� �� � a�j� k�
implies �j�� � �j�k, contradicting the maximal-
ity of �j�k. Since the subtrees comprising �V �� L��

are disjoint, no ancestor of j (or hence of �) can
lie in R�. Since the tree is binary, � must have at
least two descendents t�� t� in R� since otherwise
�r�R�R�r� would not cover R. Since a�t�� t�� � �,
then �t��t� � ���p���� � ���p�a�j�k��� � �j�k, con-
tradicting the maximality of �j�k.

Reconstruction of Binary Trees from Measure-
ments. Now we switch to the context that a stream
of probes is dispatched from the source, each giv-
ing rise to an independent realization of the mark
process. Let x�i� denote the ith such realization.
Each realization gives rise to a set of measurements
fx

�i�
p�k� � k � Rg at the leaves. Suppose that some

subtree �V �k�� L�k�� of the tree is already identified.
Then we can aggregate the measured leaf marks anal-
ogously to (2), defining ex�i�k � x

�i�
p�k� for k � R,

and forming ex�i�k � ex�i�
h�k� � ex

�i�
h��k� by recursion for

k �� R.
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Let e��n�k � n��
Pn

i�� �
ex
�i�
k

denote the empirical

distribution of ex�n�k ; here �y denotes the unit mass
at y � X . We estimate T by the topology T �n� ob-
tained by using the e��n� in place of e� in the DBT
algorithm. Specifically, we use �

�n�
j�k �� ��e��n�

j�k � in
place of �j�k in line 3 of Figure 1. We call the re-
sulting algorithm the Binary Tree Classification Al-
gorithm (BT).

Theorem 2 Under the conditions of Theorem 1, with
probability �, T �n� � T for sufficiently large n.
Hence T �n� is a consistent estimator of T and
limn�� P��T

�n� �� T � � �.

Proof of Theorem 2: By the law of large numbers,
��n� converges weakly to �, almost surely. Since
� is weakly continuous each �

�n�
j�k converges almost

surely to �j�k. Then, almost surely, for all suffi-

ciently large n, the relative ordering of the �
�n�
j�k is

the same as that of the �j�k for pairs j� k for which
the �j�k are distinct. Hence BT reconstructs the tree
in the same manner as DBT, except possibly varying
the order of grouping amongst sets of sibling pairs
�j� k� with identical �j�k. The last two statements
then follow by standard results.

Characterizing Link Behavior. In many of the
examples of the next section � is additive over links.
i.e. ���� � ��� � ����� 	 �����. Then we can
ascribe a descriptor �k, such as a packet loss rate,
to each link �f�k�� k� through �k � ���p�k�� �
���p�f�k���� (This may conveniently be done dur-
ing the execution of DBT or BT).

Extension to General Trees. Inference of general
trees is accomplished as follows. For simplicity as-
sume that � is additive. Then application of DBT to
an arbitrary tree results in a binary tree that contains
fictitious links k such that �k � �. The tree can then
be pruned by removing any such link and identify-
ing its endpoints. It can be shown that this proce-
dure yields the true general tree. In BT it is neces-
sary to apply a threshold � � � and prune all links
k with �k � �. This is because for finitely many
probes, statistical fluctuations lead the characteristic
� of the fictitious links to differ slightly from zero. It

can be shown that for sufficiently many probes, this
approach reconstructs any general tree for which all
�k � �.

3 Instances of Topology Inference

In this section we specify instances of the framework
described above, specifying the setting (the marks
X , etc) and the the forms of the functions ��� and
��n�. Theorem 1 and 2 then apply immediately in
each case.

3.1 Loss-Based Inference

In this case � is (a function of) the probability of suc-
cessful transmission from the root to a given node. In
the above formalism, we take X � f�� �g, where �
indicates packet loss and � transmission. Composi-
tion is by taking minima x� � x� � x� � x� and the
identity is z � �; a packet is transmitted on a path if
it would be transmitted on all links of that path. Ag-
gregation is by taking maxima x� � x� � x� � x�;
hence exk � � if a packet reaches any receiver de-
scended from k. It can be shown [1] that

P��xp�a�j�k�� � �� �
P��exj � ��P��exk � ��

P��exj � exk � ��
� (3)

Using Q � R� , we define � to act on the generic
measure on X as ���� � ���� 	 ���� � � log���
for � � ��� ��. Clearly ���z � ��. We write �j�k �
logP��exj � exk � ���log P��exj � ���log P��exk �
��. � is additive over links, and the link charac-
teristic is �k � � logP�k �xk � ��, i.e., the nega-
tive log probability of successful transmission over
link k. Thus � is increasing provided the link loss
probabilities are strictly positive. For inference from
measurements, ��n�

j�k � log n	log�
Pn

i�� ex�i�j ex�i�k ��

log�
Pn

i�� ex�i�j �� log�
Pn

i�� ex�i�k � where we have ex-
pressed the various probabilities in terms of the em-
pirical means.

3.2 Delay Covariance-Based Inference

In this case the increasing function � is the variance
of the cumulative delay from the root to a given node.
In the formalism, X � R, with xk the delay encoun-
tered on link k. (The formalism extends to loss by
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using xk � � to denote loss; we treat this else-
where [4]). Composition adds delays along a path:
x� � x� � x� � x�. The identity is z � �. Ag-
gregation takes the mean of two delays x� � x� �
�x� � x����. Taking Q � R� and ���� � Var��x�
we take

���p�a�j�k��� � Var��xp�a�j�k��� (4)

� Cov��exj � exk� � �j�k�

The middle equality holds since, by the inde-
pendence assumption, the only non-zero contri-
bution to Cov��exj � exk� is due to delays on the
common portion of the paths to j and k. By
the independence assumption � is additive and
so �k � Var��xk�, the delay variance of link
k. � is increasing provided delays are not con-
stant. �

�n�
j�k is the sample covariance, i.e., ��n�

j�k �

�
n

�Pn
i�� ex�i�j ex�i�k � �

n

Pn
i�� ex�i�j �

Pn
i�� ex�i�k

�
.

3.3 Delay Distribution-Based Inference

With inference supplying the full distribution of the
cumulative delay from the root to a given node,
there are several choices of the increasing function
� available: the complementary cumulative distribu-
tion function (ccdf), the delay moments, and the de-
lay variance.

In the formalism, X � fq� �q� � � � � dq��g, q �
�� d � N, with xk the delay on link k, discretized in
bins of width q. dq is a threshold delay above which
packets are considered lost, xk taking the value �.
Composition adds delays along a path: x� � x� �
x� � x�. The identity is z � �. Aggregation takes
minimum delay between paths x� � x� � x� � x�;
hence exk � y if the minimum delay from the source
to some receiver descended from k is y. In [5] it
was shown how a generalization of the approach for
loss inference in Section 3.1 above can be used to ex-
press the discretized distribution �p�a�j�k�� of the de-
lay from the root to an interior node, in terms of the
distribution e�j�k aggregate delays to leaf nodes de-
scended through offspring j� k. More precisely, de-
note Ak�i� � P�xp�k� � iq�, �k�i� � P�exp�k� � iq�,
and �j�k�i� � P�exp�j� � exp�k� � iq�, i � X . Then:

Aa�j�k���� �
�j����k���

�j��� � �k��� � �j�k���
(5)

and Aa�j�k��i�, i � 	� � � � � d, is recursively computed
as the smallest solution of the following quadratic
equation:

�j�k�i�� Aa�j�k���� � Aa�j�k����

�
Q

��fj�kg

�
��

���i��
Pi��

m�� ���i�m�Aa�j�k��m�������Aa�j�k��i�

Aa�j�k����

�

�
Pi��

m�� Aa�j�k��m�
nQ

��fj�kg ��� ���i�m��� �
o

�Aa�j�k��i�
nQ

��fj�kg ��� ������� �
o
� �

(6)

where ���i� �
���i��

Pi
m�� Aa�j�k��m����i�m�

Aa�j�k����
, � �

fj� kg.

In the first instance we can take Q as the set of
ccdf’s arising from the delay distributions. Exclud-
ing from 
 trivial distributions in which all link de-
lays are zero, then since link delays are non negative,
the map � taking distributions to ccdf’s is increasing
in the sense of Definition 1(i).

In order to avoid comparing entire distributions,
we can instead compare summary statistics. Since
link delays are non-negative then any function of the
form ���� � E��h�x� j x 	 �� is estimable and
increasing when h is an increasing function, e.g.,
h�x� � xp� p � �. (Here x represents a generic mark
with distribution �.) A special case is the delay aver-
age estimator, obtained when p � 	. This is additive
since the mean of the sum of two random variables
is the sum of their means. Another estimator is the
delay variance estimator: ���� � Var��xjx 	 ��.
This is additive due to the independence of link de-
lays.

For the delay average and variance classifiers,
use �j�k � E��xp�a�j�k�� j xp�a�j�k�� 	 �� ��Pd

i�� iqAa�j�k��i��
Pd

i��Aa�j�k��i� and �j�k �
Var��xp�a�j�k�� j xp�a�j�k�� 	 �� �Pd

i���iq�
�Aa�j�k��i��

Pd
i��Aa�j�k��i� �

E���xpa�j�k� j xp�a�j�k�� 	��, respectively, where
we condition on the delay being finite. The corre-
sponding �

�n�
j�k are computed using the estimated dis-

tribution A
�n�
a�j�k��i�, computed through (5) and (6) us-

ing the estimates ���i��n� �� n��
Pn

m�� �fx
�m�

p���
�iqg

and �j�k�i�
�n� �� n��

Pn
m�� �fx

�m�

p�j�
�x

�m�

p�k�
�iqg

in

place of ���i�, � � fj� kg, and �j�k�i�, i � X .
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3.4 Utilization-Based Inference

In this case the increasing function � is (a function
of) the probability of encountering minimal delay at
all links in a path. This case can be regarded as a
degenerate case of the delay distribution inference in
which X � f�� �g where xk � � indicates no delay
on link k, while xk � � corresponds to any non-
zero queueing delay. Hence the fraction of packets
that experience xk � � is a direct measure of the
utilization of link k. Since xp�k� � � iff xj � � for
all j in the path p�k�, the setup maps exactly onto the
loss inference described in Section 3.1, except with
the roles of � and � interchanged.

4 Misclassification Analysis

In this section, we analyze the probabilities of mis-
classification for the various instances of BT, and es-
timate their convergence rates.

Denote by Ei the event that BT has correctly re-
constructed the subtree rooted at node i, i � V .
Since the algorithm proceeds iteratively up the tree,
Ei requires first that both the subtrees rooted at its
child nodes have been correctly reconstructed, then
that its child nodes have been then paired together.
Therefore, for i � V n R we can write

Ei � Eh�i� �Eh��i� �
���l�j�k��S�i�Q�l� j� k�

�
(7)

where S�i� � f�h�i�� h��i�� k�� �h��i�� h�i�� k�ji� k ��
a�i� k�g and Q�l� j� k� is the event that

D
�n�
i �l� j� k� �� �

�n�
l�j � �

�n�
l�k � � (8)

holds. In ��l�j�k��S�i�Q�l� j� k�, h�i� and h��i� are
grouped together to form node i for all possible ways
to reconstruct the tree. Denote by E the event that
the tree is correctly classified. ¿From (7) we imme-
diately have that E � �i�V nR ��l�j�k��S�i�Q�l� j� k�.
This provides the following upper bound for the mis-
classification probability, denoted by

P f �� P�Ec� �
X

i�V nR

X
�l�j�k��S�i�

P�Qc
i �l� j� k�� (9)

Normal Approximations It can be shown thatp
n��

�n�
i�j � �i�j� has asymptotically Gaussian dis-

tribution as the number of probes n � � in all in-
stances described in Section 3. See [2, 4] for the loss

and delay covariance case, for the other estimators it
follows from Theorem 3 in [5].

Theorem 3 Under the conditions of Theorem 1, for
each i � V n R,

p
n � �D�n�

i �j� l� k� � Di�j� l� k��,
�j� l� k� � S�i�, where Di�j� l� k� � �j�l � �j�k,
converges in distribution, as the number of probes
n � �, to a Gaussian random variable with
mean 0 and variance ��Di

�j� l� k� � limn�� n ��
Var��

�n�
j�l � 	 Var��

�n�
j�k �� 
Cov��

�n�
j�l ��

�n�
j�k �

�
.

Theorem 3 suggests we can approximate

P�Qc
i�j� l� k�� by �

�
�pn � D�j�l�k�

�Di �j�l�k�

�
, where �

is the cdf of the standard normal distribution. For
large n, we have the following leading exponential
approximation

P�Qc
i�j� l� k�� 	 e

��n���D�

i
�j�l�k���

Di
�j�l�k� (10)

where the exponent is given by the dominant term of
the ratio. Since the largest term over 
i�V nRS�i� in
(9) should dominate for large n, we expect the curve
logP f vs. n to be asymptotically linear with nega-
tive slope

inf
i�V nR

inf
�j�l�k��S�i�

D�
i �j� l� k�

��
Di
�j� l� k�

(11)

4.1 Misclassification Probability for the Dif-
ferent Classifiers

The foregoing analysis can be instantiated with the
different estimators to obtain the misclassification
probability of the topology classifiers. In the fol-
lowing we compute the asymptotic behavior of the
different classifiers by substituting the proper expres-
sions in (11). In general, the calculation of the infi-
mum in (11) is quite difficult since ��Di

�j� l� k� is a
complex function of both the topology and the distri-
bution �. Here, we capture the dominant modes of
misclassification in asymptotic regime of small loss
and delay. The results in [2] and Theorem 3 in [5]
suggest that in this regime, the curve logPf vs. n is
asymptotically linear with negative slope

1. for the loss based classifier
n



inf

i�V nR
P�xi � �� (12)
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Figure 2: MODEL SIMULATION. Fraction of correctly classified topologies for different classifiers as func-
tion of the number of probes: (a) light load scenario; (b) heavy load scenario.

2. for the utilization based classifier

n

�
inf

i�V nR
P�xi � �� (13)

3. for the average based classifier

n

�
inf

i�V nR
k�V j i�k ��a�i�k�

�P
i�j�a�i�k� E�xi�

��
P

i�j�a�i�k� E�x
�
i �

(14)

4. for the variance based classifier

n

�
inf

i�V nR
k�V j i�k ��a�i�k�

�P
i�j�a�i�k� Var�xi�

��
P

i�j�a�i�k� E�x
�
i �

(15)

We were not able to establish an analogous re-
sult for the covariance based approach. In this case
we used our experience from experiments to deter-
mine which event dominates misclassification. We
observe in most experiments that, as n increases, the
most likely way to misclassify a tree is by incorrectly
identifying the link with the smallest link variance;
this happens by mistakenly grouping one of its child
nodes with its sibling node. This suggests the fol-
lowing approximation for the covariance approach

P f
� e

��n���
Var

��xj�

��
Dj

�h�i��h��i��j��

� (16)

where j � arg mini�V nRVar�xj�.

5 Simulation Evaluation and Algo-
rithm Comparison

In this section we compare the performance of the
different classification algorithms through two types
of simulation. In model simulations delay and loss
are chosen to follow our statistical model, allowing
us to test algorithm performance in the setting on
which our analysis is based. Network simulations,
using the ns [7] simulator, test the algorithms in a
more realistic setting, where delay and loss are due to
queueing delay and buffer overflows at nodes as mul-
ticast probes compete with background TCP/UDP
traffic.

5.1 Model Simulation

In the model simulations, at each link a probe is ei-
ther lost, or encounters no delay, or suffers an expo-
nentially distributed delay. We conducted 1000 sim-
ulations over random generated 15 node binary trees.
In Figure 2 we plot the fraction of correctly classified
topologies as a function of the number of probes for
the different classifiers. We considered two regimes:
a light load regime with low loss (1%) and utiliza-
tion (randomly chosen between 10% and 40%), and
a heavy load regime with higher loss (randomly cho-
sen between 1% and 20%) and utilization (randomly
chosen in between 30% and 80%). In both cases,
mean delays were randomly chosen between 0.2ms
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Figure 3: ns SIMULATION: (a) simulation topology; (b) fraction of correctly classified topologies for
different classifiers as function of the number of probes

and 2ms. We adopted a delay granularity of 1ms.
(Although this seems large compared with mean de-
lays, the delay predictions are quite accurate; see
[5]).

The loss based classifier is found to be most accu-
rate in general. The exception is with small numbers
of probes at small loss rates. Then rare losses provide
insufficient data points, and accuracy is greater for
the utilization and average delay classifiers. The uti-
lization based classifier has the best accuracy among
the delay distributions based classifiers. This was ex-
pected because the delay average and variance ap-
proaches use estimates of the entire delay distribu-
tion while the utilization approach uses estimates of
only the first bin; estimation of the weights of lower
bins being found to be more accurate. Similarly, de-
lay average is more accurate that delay variance since
it attaches less weight to higher delay bins.

From the plots, the utilization based approach ap-
pears to work very well with low links utilizations,
while its performance degrades with higher utiliza-
tions, which is in contrast with (13). This can be
explained by observing that the theorem holds for
the limit behavior as utilization goes to 0; in our ex-
periments, we found that (13) captures well the mis-
classification behavior for utilization up to ���. On
the other hand, as link utilizations increase, the num-
ber of events used by the algorithm, namely those of
minimum end-to-end delay, decreases rapidly. This
results in increased estimator variance.

The two best performing algorithm, (loss and uti-
lization based) have the smallest computational com-
plexity. All algorithms require O��R�� node pairs
computations. Each of these is O�n� for the loss,
utilization and covariance based estimators. These
are considerably more complex for the delay average
and variance classifiers since the whole delay dis-
tribution must be calculated, by recursively solving
quadratic equations, the number of which is inversely
proportional to the bin size q.

5.2 TCP/UDP Network Simulation

The ns simulations used the topology shown in Fig-
ure 3(a). To capture the heterogeneity between edges
and core of a WAN, interior links have higher capac-
ity (5Mb/sec) and propagation delay (50ms) then at
the edge (1Mb/sec and 10ms). Each link is modeled
as a FIFO queue with a 4-packet capacity.

The root node � generates probes as a 20Kbit/s
stream comprising 40 byte UDP packets according
to a Poisson process with a mean interarrival time of
16ms; this represents �� of the smallest link capac-
ity. The background traffic comprises a mix of in-
finite data source TCP connections (FTP) and expo-
nential on-off sources using UDP. Averaged over the
different simulations, the link loss ranges between
�� and ��� and link utilization ranges between ���
and ���. The average delay ranges between 1 and
2ms for the slower links and between 0.2 and 0.5ms
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for the faster links. The delay distributions were
computed using a bin size of 1ms.

In Figure 3(b) we plot the fraction of correctly
identified topologies over 100 simulations. The rel-
ative accuracy among the different classifiers is in
agreement with the results from the model simula-
tion with the loss based algorithm having the best
performance with no misclassification for more than
500 probes. The rather poor performance of the de-
lay based algorithms, with the exception of the uti-
lization classifiers, is largely due to the presence of
spatial correlation. In our simulations, a multicast
probe is more likely to experience a similar level of
congestion on consecutive links or on sibling links
than is dictated by the independence assumption.
This has negative impact on the accuracy of the de-
lay estimates which accounts for the observed per-
formance.

We also observed temporal correlation among suc-
cessive probes that encountered the same congestion
events. However, it can be shown that the presence
of short-term correlation does not affect estimator
consistency, although the convergence rate may be
slowed.

6 Conclusions

In this paper we have presented a general frame-
work for the inference of the multicast tree topolo-
gies from end-to-end measurements. In contrast with
tools such as mtrace [6], cooperation of interven-
ing network nodes is not required.

We specified an algorithm which reconstructs the
topology of multicast tree in presence of any packet
performance measure that: (i) monotonically in-
creases as the packet traverses down the tree; and
(ii) that can be estimated on the basis of end-to-end
measurements at the receivers. Building on previous
results in [1, 4, 5], we were able to specify several in-
stances of this algorithm based on performance mea-
sures as packet loss, link utilization, delay average
and delay variance.

We investigated the statistical properties of the al-
gorithms, and showed that, under mild assumptions,
they are consistent and computed their convergence
rate. We evaluated our classifiers though simulation.
We found out that the two algorithms with the low-

est computational complexity, namely, the loss based
and the utilization based algorithm, also have the best
performance, with the loss based algorithm being in
general the most accurate except when the number
of probes and the loss rate are both small. More-
over, both algorithms seemed to be robust and exhibit
good convergence in real traffic simulations, in spite
of violation of the independence assumption of our
model.

Finally, the algorithms described in this paper are
each based on a different performance metric. We
are currently extending our work by studying algo-
rithms which fully take advantage of the available
measurements by possibly integrating the different
performance metrics we have here separately consid-
ered.
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Abstract— The use of end-to-end multicast traffic measurements has
been recently proposed as a means to infer network internal characteristics
as packet link loss rate and delay. In this paper, we propose an algorithm
that infers the multicast tree topology based on these end-to-end measure-
ments. Differently from previous approaches which make only partial use
of the available information, this algorithm adaptively combines different
performance measures to reconstruct the topology. We establish its consis-
tency and evaluate its accuracy through simulation. We show that in gen-
eral it requires many fewer probes to correctly identify the topology than
other methods.

Keywords. End-to-end measurements, Topology Discovery,
Adaptive, Estimation Theory, Multicast Tree.

I. INTRODUCTION

Background and Motivation. As communications networks
grows in size and complexity, it has become increasingly im-
portant to measure their performance. To overcome the limi-
tations imposed by administrative diversity which de facto pre-
vents general direct access to large portions of the network, there
has been increasing interest in approaches that aim to character-
ize the network internal behavior from the sole external end-to-
end measurements. Currently, there are several measurements
infrastructure projects (including CAIDA [2], Felix [9], IPMA
[10], NIMI [15] and Surveyor [18]) that collect and analyze end-
to-end measurements across a mesh of paths between hosts.

In these approaches, a fundamental design issue is the type
of measurements to be performed across the network and the
methodology adopted to infer the internal network behavior
in terms of the performance experienced by the measurements
hosts. A promising approach, MINC (Multicast Inference of
Network Characteristics), relies on the use of multicast end-
to-end measurements. In contrast to unicast traffic, multicast
traffic introduces a well structured correlation in the end-to-end
behavior observed by the receivers that share the same multicast
session. This in turn allows to draw inferences about the perfor-
mance characteristics of the internal links without the coopera-
tion of network elements in the path such as packet loss rates,
[3], packet delay distributions, [11], and packet delay variance,
[6]. There is ongoing work [1] to incorporate some of these
techniques into the NIMI measurements infrastructure.

All these inference methods require knowledge of the mul-
ticast tree topology. Unfortunately, this is typically unknown.
This motivates the need for algorithms that can identify the
topology of the tree. Another motivation is that knowledge of
the multicast topology can be of use to multicast applications.
There are several reliable multicast protocols (e.g., RMTP[14])
which organize receivers in logical hierarchies using the under-
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lying topology, if possible. Other applications attempt to iden-
tify receivers that share the same network bottleneck [16].

Several algorithms have been proposed for identifying multi-
cast topologies based on the sole loss observations at receivers.
An algorithm for inferring the topology of a binary tree was first
proposed in [16]. The main idea was the simple observation
that as the number of packets grows multicast receivers shar-
ing a longer portion of the multicast distribution tree also have
higher shared loss rates; this information could in turn be used
to reconstruct the topology by recursively grouping the pair of
nodes with the highest shared loss. In [8] the correctness this
algorithm was proven and the approach was extended to general
topologies by introducing several other loss-based algorithms.
More recently, algorithms have been proposed for identifying
multicast topologies based on delay measurements instead. By
observing that the approach in [16] and [8] can be generalized
to any performance measures that (i) monotonically increases as
the packet traverse the tree, and (ii) can be estimated on the sole
basis of end-to-end measurements at the receivers, in [7] several
algorithms are specified based on delay performance measures
as link utilization, delay average and delay variance.

The accuracy of these approaches is limited by the fact that
each of the above algorithm reconstructs the topology using only
the information provided by one single performance measure,
e.g., loss rates or delay averages, thus making only partial use
of the available measurements. In addiction, as shown in [7],
no algorithm appears to perform better than the others in gen-
eral. Our experience has shown that typically under moderate
and heavy load network conditions (high link loss and utiliza-
tion) the loss based algorithm is generally the most accurate
while under light load condition (low link loss and utilization),
the algorithm based on link utilization performs best. Therefore,
it is then not clear which algorithm could be best suited to re-
construct multicast topologies across large internetworks where
different portions of the network can experience quite different
conditions. In the most general case, the different algorithms
could yield quite different reconstructed topologies; clearly, a
method which allows to choose among them or better to com-
pose them is much desired.

Contribution. In this paper we propose a new algorithm for iden-
tifying multicast topologies based on joint loss and delay mea-
surements at the receivers. This algorithm combines the differ-
ent performance measures and reconstruct the tree by adaptively
choosing step by step that which insures the best accuracy. In-
tuitively, by so doing we compose the topologies each perfor-
mance measure would yield by choosing for each portion of the
tree its more accurate reconstruction.
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The key contribution underlying this approach is the ability to
determine which performance measure minimizes the probabil-
ity of making an error. We propose a technique for estimating
the probability of incorrect identification of the topology. This
is accomplished by a careful enumeration of all the possible er-
roneous decisions and by estimating the probability of each of
them. We also analyze the modes of misclassification and ver-
ify that our estimate converges to the true error probability as
the number of packets increases. Therefore we can use this esti-
mate to determine the level of accuracy of a given reconstructed
topology, or more importantly, the number of probe packets re-
quired to achieve a desired level of accuracy.

We establish that the joint algorithm is consistent, i.e. the
probability of correctly identifying the topology converges to 1
as the number of probes grows to infinity. Analysis of a simple
scenario shows that the joint algorithm can significantly outper-
form any of the algorithms previously considered. We also use
simulation to evaluate its accuracy. In all the scenarios consid-
ered, we find that the joint algorithm has the best performance,
requiring in general many fewer probes to correctly identify the
topology than other methods.

In this paper, we will restrict our attention to topology infer-
ence based solely on loss and utilization performance measures.
A first reason is simplicity; as later shown, the loss process and
the utilization process are formally identical once we substitute
the event of “packet not lost” with the event of “packet not de-
layed”; as a consequence the very same results apply in both
cases. A second reason is that they also have the lowest com-
putational complexity. Finally, they are the most accurate: as
previously mentioned, in most cases, either the loss based or the
utilization based algorithms has the best performance. Hence,
while the joint algorithm extends to accommodate other perfor-
mance measures, in practice most of the benefit is achieved by
combining the loss and utilization estimators.

Implementation Requirement. In contrast to loss, delay measure-
ments require the deployment of measurements hosts with syn-
chronized clocks. Global Positioning System (GPS) which is
used in some of the mentioned measurements infrastructures al-
lows accuracy within tens of microseconds. This is sufficient
for accurate utilization measurements which, in particular, re-
quire the accurate assessment of the minimum end-to-end delay.
We believe this is not the case for the more widely deployed
Network Time Protocol [12], which only provides accuracy on
the order of tens of milliseconds.

Structure of the Paper. The rest of the paper is organized as fol-
lows. In Section II and III we review our model and the loss and
utilization topology inference algorithms In Section IV we in-
troduce the joint loss/utilization algorithm; we also describe the
technique for estimating the probability of topology misclassifi-
cation. In Section V we analyze the performance of the differ-
ent algorithms. Their accuracy is then evaluated in Section VI
through simulation. We conclude in Section VII; some proofs
are deferred to the Appendix.

II. MODEL & INFERENCE

Tree Model. The physical multicast tree comprises actual net-
work elements (the nodes), and the communication links than

join them. The logical multicast tree comprises the branch
points of the physical tree, and the logical links between them.
The logical links comprise one or more physical links. Thus
each node in the logical tree, except the leaf nodes and possibly
the root, must have 2 or more children. We can construct the
logical tree from the physical tree by deleting all links with one
child (except for the root) and adjusting the links accordingly by
directly joining its parent and child.

Let � � � � � � � denote a logical multicast tree with nodes
� and links � . We identify the root node � with the source of
probes, and � 	 � will denote the set of leaf nodes (identified
as the set of receivers). The set of children of node 
 � � is
denoted by � � 
 � . For each node 
 , other than the root 0, there
is a unique node 
 � 
 � , the parent of 
 , such that � 
 � 
 � � 
 � � � .
We will refer to the link � 
 � 
 � � 
 � as simply link 
 . We shall
define 
 � � 
 � recursively by 
 � � 
 � � 
 � 
 � � � � 
 � � with 
 � � 
 .
We say that � is a descendant of 
 if 
 � 
 � � � � for some integer� � � , and write the corresponding partial order in � as � � 
 .� � � � � � will denote the minimal common ancestor of � and � in
the � -ordering. For 
 � � we let � � 
 � � � � � 
 � � � � 
 � � denote
the subtree of � that is rooted at 
 , and set � � 
 � � � � � � 
 � .

Delay and Loss Model. Probe packets are dispatched down the
tree from the root node 0. With multicast, each probe arriving
at anode 
 gives rises to copy sent to each child node of 
 . On
each link, the packet is either lost, or transmitted with some de-
lay. We regard the delay as the sum of two components: a fixed
propagation delay, and a variable queueing delay. We represent
the latter by a random variable � � � � � � � � that specifies the
queueing delay encountered by a packet attempting to traverse
link 
 , with � � � � signifying packet loss. By convention

� � � � . The accrued queueing delay for the path from the root
to a node 
 is � � �  ! " � � � . This yields the property that

� � � � for a packet lost on some link between node � and 
 ;
likewise � � � � if no queueing delay is encountered on any link
of the path.

Let # $ � 
 � � % � � � & � � denote the probability of transmis-
sion on link 
 , and # ' � 
 � � % � � � � � � the probability of trans-
mission with no queueing delay. A tree is said to be canonical if
for all links 
 , � & # ' � 
 � ( # $ � 
 � & ) . A tree can be reduced
to canonical form by (i) removing each link 
 for which with

# $ � 
 � � ) or # ' � 
 � � ) and identifying its endpoints; and (ii)
pruning all subtree descended from links that have # $ � 
 � � �
or # ' � 
 � � � . Henceforth we work exclusively with canonical
trees; only for these are the link characteristics uniquely identi-
fiable.

Loss and Utilization Processes. Here it suffices to analyze a
projection of the delay processes � � . For each 
 � � let* $ � 
 � � + , - . � / 0 1 2 . We call

* $ � � * $ � 
 � � � 3 4 the loss
process:

* $ � 
 � � ) if the probe reaches 
 and � other-
wise. For each 
 � � let

* ' � 
 � � + , - . � / 5 � 2 . We call* ' � � * ' � 
 � � � 3 4 the utilization process:
* ' � 
 � � ) if the

probe reaches 
 with no queueing delay, and � otherwise. The
name arises since link queueing delay is zero iff the link is not
utilized: ) 6 # ' � 
 � is hence the link utilization.

We assume the � � are independent random variables. Then* ' and
* $ are Markov processes on � . Their structure is for-
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mally identical. The loss process satisfies

� � � � � � � � � � � � � 	 � � � � 
 � � � 	 � � � �
� � � � � 	 � � � 
 � � � � � 	 � � � � � � � � � 	 � � (1)

The utilization process is formally identical upon replacing the
event of “no loss” with that of “no delay”. Then (1) holds when� � � � � are replaced by

� � � � � . In the rest of the paper we will
omit the subscripts � and � when the same statement holds for
both cases.

Inference of Shared Path Characteristics. When probes are sent
down the tree we cannot observe the entire processes

�
but only

the outcomes at the receivers � � � 	 � � � � � . By exploiting the
correlation of multicast traffic, in [3] it was shown how the link
loss rates can be computed from the distribution of � � � 	 � � � � �
when the topology is known. Here, to infer the topology, we
will use the following generalization of the results in [3].

Let � � 	 � � � � � � � � � � denote the probability that a probe
reaches node 	 (the � � � 	 � version) or reaches is without queue-
ing delay (the � � � 	 � version). A short probabilistic argument
shows that for any two nodes � and � , � � � �� � � � � � � ,

 ! " # $  ! % & ' # ( $ ) * + , - . / 0 1 2 ! 3 # $ 4 5 ) * + , - . / 6 1 2 ! 3 # $ 4 5
) * + , - . / 0 1 2 ! 3 # $ + , - . / 6 1 2 ! 3 # $ 4 5 (2)

where 	 � � � � � � � . (2) expresses the behavior along the shared
portion of the path from the source to a pair of nodes in terms of
the probabilities of leaf-measurable events.

To infer the probabilities from measurements, consider an
experiment in which a set of 7 probes is dispatched from the
source. From the outcomes � 8 9 : ; � � � � � 8 9 < ; � with 8 9 = ; �

� � 9 = ; � 	 � � � � � , we can estimate � � 	 � by substituting the prob-
abilities in (2) by their empirical means, obtaining

� 9 < ; � � � � � � > <= ? :
� 9 = ; � � � @ > <= ? :

� 9 = ; � � �
7 @ > <= ? :

� 9 = ; � � � @ � 9 = ; � � � (3)

where we define
� 9 = ; � 	 � A � B C � � 9 � ; � 9 = ; � D � . It is possible to

show that � 9 < ; � � � 9 < ; � � � � � � E F � � G is consistent ( � 9 < ; < H IJ K �
with probability 1) and, as 7 goes to infinity, L 7 � � 9 < ; J � � con-
verges in distribution to a multivariate Gaussian random variable
with mean 0 and covariance matrix M N � M N � � � . Details can
be found in [8].

A complication arises in case of utilization estimation as we
have to account for (i) the presence of the fixed delay compo-
nent in the experimental data due to propagation delays and (ii)
the inherent limitation of time measurements accuracy due to
clocks resolution. To this end, we (i) normalize each measure-
ment by subtracting the minimum delay seen at the leaf and (ii)
introduce a tolerance O (typically smaller than � P Q ) in deciding
whether a given delay is a “minimum” delay. In other words, op-
erationally we define

� 9 = ;� � 	 � � R S T U V W 9 � ; X Y Z [ \ ] ^ _ T U ] W 9 � ; ` a b
where c 9 = ; � 	 � is the delay experienced by the P d e probe sent
to receiver 	 . This amounts to assign the observed minimum de-
lay as the propagation delay, under the assumption that at least
one probe has experienced no queueing delay along the path.

1. Input: The set of receivers f � g � : � � � � � � h i
2. f j A � f ; k j A � f j ; l j � m ;
3. while 
 f j 
 n � do
4. o A � select pair ;
5. k j A � k j p g o i ;
6. l j A � l j p g � o � D � A D q o i ;
7 � � D � � � � D � r � � � � 	 � , D q o ;
8. f j A � � f j s o � p g o i ;
9. enddo
10. k j A � k j p g � i ; l j � l j p g � � � f j � i ;
11. Output: tree � k j � l j � ;
12. procedure select pair
13. return o � g � � 	 i t f j with minimal � � � � 	 � ;
14. end procedure

Fig. 1. Deterministic Binary Tree Classification Algorithm (DBT).

III. LOSS AND UTILIZATION TOPOLOGY INFERENCE

Deterministic Reconstruction of Binary Trees. Our approach
to loss (or utilization) topology inference relies on being able
through (2) to identify the characteristics along internal paths of
the multicast tree from the probability of measurable events at
receivers. The key observation is that � � � � 	 � u � � � j � 	 j � im-
plies � � � � 	 � v � � � j � 	 j � , from which it follows that the pair

g � � 	 i w f which has minimal � � � � 	 � is a sibling pair; a short
argument shows that if not, � � � � 	 � would not be minimal. The
idea is to proceed recursively, starting from the receivers, by
adding the parent node as sibling are identified. This approach
is formalized in the Deterministic Binary Tree Classification Al-
gorithm (DBT); see Figure 1.

DBT operates as follows. f j denotes the current set of nodes
from which a pair of siblings will be chosen, initially equal to
the receiver set f . We first use the procedure select pair below

procedure select pair
return o � g � � 	 i t f j with minimal � � � � 	 � ;

end procedure

to find the pair o � g � � 	 i that minimizes � � � � 	 � (line 4). This
identifies the members of o as siblings, and the set o is used
to represent their parent. Correspondingly, we add o to the list

k j of nodes (line 5), � o � � � � � o � 	 � to the list l j of links (line 6),
compute � � � � and � � 	 � by taking the appropriate quotient (line
7) and replace � and 	 by o in the set f j of nodes available for
pairing in the next stage (line 8). This process is repeated until
all sibling pairs have been identified (loop from line 3). Finally,
we adjoin the root node � and the link joining it to its single
child (line 10).

We say that DBT reconstructs the binary logical multicast tree
� k � l � if given the receiver set f it produces � k � l � as its output.

Theorem 1: Let x be a binary tree. Then DBT reconstructs
x .
We postpone the proof to the Appendix.

Reconstruction of Binary Trees from Measurements. It is
straightforward to derive from DBT an algorithm that es-
timates the topology from the end to end measurements

� 8 9 : ; � � � � � 8 9 < ; � . The idea is to estimate x by the topology x 9 < ;
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4

obtained by using the estimates � � � � � � � � � in place of � � � � � � .
This amounts to modifying the procedure select pair as follows

procedure select pair
return 	 
 � � � � � 
 � � with minimal � � � � � � � � � ;

end procedure

Computation of � � � � � � � � � is accomplished via (3); to this end,
observe that

� � � � � � � 
 � � � � � � � � � � � � � � , so they can be recur-
sively computed as the tree is reconstructed. It therefore suffices
to add the line

4a. foreach � 
 � � � � � � � do
� � � � � 	 � 
 � � � � � � � � � � � � � � � ;

We call the resulting algorithm the Binary Tree Classification
Algorithm (BT).

Theorem 2: With probability � , � � � � 
 � for sufficiently
large � . Hence � � � � is a consistent estimator of � , i.e.,� � � �  ! " # � � � � $
 � % 
 & .
Proof of Theorem 2: Since � � � � � � � � � converges almost almost
surely to � � � � � � , then, with probability 1, for all sufficiently
large � , the relative ordering of the � � � � � � � � � is the same as that
of the � � � � � � for pairs � � � for which the � � � � � � are distinct.
Hence, for all � sufficiently large, BT reconstructs the tree in
the same manner as DBT, except possibly varying the order in
which it groups pairs � � � � � with identical � � � � � � . The last two
statements then directly follow by standard results.

Finally, observe that in line 7 BT computes an estimate' � � � � � � 
 � � � � � 	 � ( ' � � � � � � of ' � � � . From Theorem 2 then it
immediately follows that as � goes to infinity ' � � � � � � converges
with probability 1 to ' � � � .

Extension to General Trees. Inference of general trees can be
accomplished by extending BT. In [8] we propose and analyze
different alternatives. The simplest approach, which also turns
out to be the most computationally efficient and accurate, pro-
ceeds in two steps: first it reconstructs a binary tree using BT;
then it applies a threshold ) and prune all links � such that' � � � � � � * � + ) . The idea comes from the observation that
the application of DBT to an arbitrary tree results in a binary
tree in which all links � which do not exists in the original tree
satisfy ' � � � 
 � . In BT, the use of a threshold ) accounts for
the statistical variability of the estimates.

IV. A JOINT LOSS-UTILIZATION ALGORITHM

We now extend the framework for topology inference by
proposing an algorithm which combines loss and utilization
measurements. We contrast this to BT which is based on a single
performance measure. The idea consists in reconstructing the
topology by adaptively choosing at each step the performance
measures which insures the best accuracy. We describe the al-
gorithm below. The algorithm bases its decisions on estimates
of the probability of misclassification. In the remainder of the
section we will present a technique for estimating this probabil-
ity.

The Joint Loss-Utilization Classification Algorithm. The joint
algorithm proceeds like BT by recursively grouping nodes start-
ing from the set of receivers. Differently from BT, here we
choose at each step the performance measure on which to base

the grouping decision; more precisely, at each step we determine
the two pairs that minimize � � � � , � � � � � and � � � � - � � � � � and group
that which also minimizes the probability of making an error.
Specifically, we modify the procedure select pair as follows

procedure select pair
foreach

� . � / � 0 �
select 	 1 
 � � 1 � � 1 � 
 � � with
minimal � � � � 1 � � 1 � � 1 � ;

return 	 
 � � � � � 
 argmin 2 3 4 5 � 4 6 5 1 � 2 , 5 - 6 7 8 5 � � �1 5 9 : ;
end procedure

where 7 8 5 � � �1 5 9 : denotes the (estimated) probability of misclassi-
fication, given the current set of nodes � � , pairing nodes accord-
ing to performance measure

�
. We will detail how to compute

this estimate in Section IV-A.
We call the resulting algorithm the Joint Binary Tree Classifi-

cation Algorithm (JBT). Denote � � � �3 the topology obtained by
JBT.

Theorem 3: With probability � , � � � �3 
 � for sufficiently

large � . Hence � � � �3 is a consistent estimator of � , i.e.,� � � �  ! " # � � � �3 $
 � % 
 & .
We formalize the proof in the Appendix. The intuition beyond
the proof is that, for all sufficiently large � , with probability
1, the relative ordering of the � � � � � � � � � is the same as that of� � � � � � (which observe can be different for loss and utilization)
from which it follows that the two pairs of nodes which mini-
mize � , � � � � � and � - � � � � � are both siblings pairs.

Extension to General Trees. Inference of general trees is ac-
complished by reconstructing a binary tree using JBT first and
by then pruning all links � such that ' � � �, � � � * � + ) , and' � � �- � � � * � + ) - , where we use possibly different loss and
utilization thresholds, ) , and ) - . The estimates ' � � �, � � � and' � � �- � � � are computed in line 7 of JBT by taking the appropriate
ratio.

A. Estimation of the Misclassification Probability

In this section we describe the estimate of the probability of
misclassification that is used in JBT. Classification proceeds by
a sequence of comparison operations; the analysis of misclassi-
fication is therefore potentially complex due to the need to ana-
lyze a large number of statistically dependent modes of failure.
Our approach to this is to divide and conquer. Correct classifica-
tion requires correct ordering of quantities � � � � � � in a number
of comparison. For each such comparison, we approximate the
probability of incorrect ordering in terms of the tail probability
of a Gaussian random variable whose variance we calculate. For
large numbers of probes, the probability of misclassification is
dominated by the largest such misordering probability.

The generic comparison involves three nodes � � � and / , where; � � � � � $
 ; � � � / � . Since ; � � � � � < ; � � � / � iff � � � � � � = � � � � / � ,
the correct descendency relation between ; � � � � � and ; � � � / � is
identified if > � � � � � � � � / � ? 
 � � � � � � � / � + � � � � � � � � � (4)

has the same sign as its deterministic counterpart

>
� � � � � / � 
� � � � / � + � � � � � � . Let @ � � � � � / � denote this event.
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The following theorem, essentially proved for loss-based
classification in [8], characterizes the asymptotic behavior of

� � � � � � � � � � 	 first for large 
 , then for small loss and delays. De-
note � � 
 � � and let � � � 	 � � � � � � � � � 	 .

Theorem 4: For each triple � � � � � � 	 , � 
 � �
� � � � � � � � � � 	 ��

� � � � � � 	 	 , � � � � � � 	 , converges in distribution, as the number of
probes 
 � � , to a Gaussian random variable with mean 0 and
variance � � � � � � � � 	 . Moreover, as � � � � � � � � �  � � � 	 � ! :
(i)

�
� � � � � � 	 � � � " � � � � 	 	 � � � " � � � � 	 	 � � � � � � � 	 ;

(ii) � � � � � � � � 	 � # � � " � � � � 	 	 � � � " � � � � 	 	 # � � � � � � � 	 ;
Measurements yield the statistic

� � � � � � � � � � 	 with which to
infer the descendency relations. From this we would infer" � � � � 	 � " � � � � 	 if and only if

� � � � � � � � � � 	 $ ! . Misorder-
ing occurs when

�
� � � � � � 	 and

� � � � � � � � � � 	 have opposite signs.
For large 
 , Theorem 4 suggests the following approximation
for the probability of misordering

% & ' � � � � � � � 	 ( � � � � � 
 #
�

� � � � � � 	 #� � � � � � � 	 � (5)

where � is the cdf of the standard normal distribution. Since
�

� � � � � � 	 and � � � � � � � � 	 are unknown, we need to estimate them
first. The idea is to simply estimate

�
� � � � � � 	 by

� � � � � � � � � � 	 .
For the variance, we use the fact that � � � � � � � � 	 is a con-
tinuous function � ) � � of * , � � � � � � � � 	 � 	 
 � & * � � � � � � � 	 ( �	 
 � & * � � � � � � � 	 ( � � 
 � � & * � � � � � � � 	 � * � � � � � � � 	 ( � � � + � ) , � � � ) , � � �

� + � ) , � � � ) , � � � � � + � ) , � � � ) , � � 	 - 
 � � ) � � � * 	 , and estimate it by� � � � � � � � � � � 	 � � ) � � � * � � � 	 . We thus approximate the probabil-
ity of incorrect ordering . & ' � � � � � � � 	 ( by

. / , � � �) � � � � � � � � 
 #
� � � � � � � � � � 	 #� � � � � � � � � � 	 � (6)

where we used in place of

�
� � � � � � 	 and � � � � � � � � 	 their esti-

mates. The accuracy of (6) relies on the convergence of the
estimates

� � � � � � � � � � 	 and � � � � � � � � � � � 	 . We will verify this in
Section VI.

Misclassification Probability Estimate. Consider now the 0 -th
step of JBT(or BT) and denote by 1 � � �2 the current set of nodes

and 3 � � � � � 4 5 1 � � �2 the pair with minimal * � � � � � � � � � 	 . This
pair is chosen on the basis of the orderings

� � � � � � � � � � 	 $ !
for each triple � � � � � � 	 6 � � 1 � � �2 	 � 3 � � � � � � 	 � � � � � � � 	 4 �� 1 � � �2 7 3 � � � � � 4 	 . With each such ordering we associate a mis-

ordering probability . / , � � �) � � as in (6). From the union bound% & 8 � � 9 : ; <� � ' � � � � � � � 	 ( = � � � 9 : ; <� � % & ' � � � � � � � 	 ( we associate

with the selection of � � � � � � 	 an estimated misclassification
probability through the sum

. / , � � �9 : ; <� � �� ) , � , � � � � � 9 : ; <� � . / , � � �) � � (7)

� � � �� ) , � , � � � � � 9 : ; <� � . / , � � �) � � (8)

� � � � � 
 � > �� ) , � , � � � � � 9 : ; <� � #
� � � � � � � � � � 	 #� � � � � � � � � � 	 � ? (9)

This is the misclassification estimate we use in JBT. The ap-
proximation arises because for large 
 , the term with the small-
est argument #

� � � � � � � � � � 	 # - � � � � � � � � � � 	 will dominate the rest.

Observe that . � � �9 : ; <� ,

� � � � � � � � � � 	 and � � � � � � � � � � 	 can be di-

rectly computed from 3 * � � � � � � � 	 : 3 � � � 4 6 1 � � �2 4 . Further-
more, when selecting between the loss and utilization methods
during step 0 , we need only select that with the smallest com-
posite argument

� > � � ) , � , � � � � � 9 : ; <� � #
� � � � � � � � � � 	 # - � � � � � � � � � � 	 .

Topology Misclassification Probability Estimate. (7) associates
a misclassification probability estimate with a single grouping
decision. Using a simple union bound argument, we can also
associate a misclassification probability estimate with the en-
tire reconstructed topology @ � � � . In JBT, since we group the
pair of nodes which yields the smallest . / , � � �9 : ; <� , we can estimate

the topology misclassification probability by summing over the
minimum between the loss and utilization misclassification es-
timates,

. / , � � �) � � �  � 9 � A B� 2 C B
� > � 3 . / , � � �� , 9 : ; <� � . / , � � �D , 9 : ; <� 4 ? (10)

It is easy to realize that we can also associate a misclassification
probability estimate to the topology inferred by BT. The differ-
ence is that it is simply computed by summing over (7), i.e.,. / , � � � � � � �  � 9 � A B2 C B . / , � � �9 : ; <� . In Section VI we will illustrate

applications of these estimates.

V. ANALYSIS OF CLASSIFIER PERFORMANCE

A. Performance of Single Classifier using BT

The analysis of the actual misclassification probabilities mir-
rors much of the previous analysis. Consider a node E 6 F
which is to be identified during the step 0 of BT. Let � � E 	
and � � � E 	 denote its two children. Correct identification ofE occurs if neither � � E 	 nor � � � E 	 is incorrectly paired with
some other element of 1 2 , the set of nodes available for
pairing at step 0 . Thus, the event of correct classification
at step 0 is ' 2 � G � ) , � , � � � � � 9 � � ' � � � � � � 	 where � � 1 2 	 �3 � � � E 	 � � � � E 	 	 � � � � � E 	 � � � E 	 	 4 � � 1 2 7 3 � � E 	 � � � � E 	 4 	 . Correct

classification of the whole tree is the event ' � G �  � 9 � A B2 C B ' 2 .
Now, the various ' � � � � � � 	 are not independent events, and

neither are the ' 2 . However, we can use union bounds to bound
above the probability of misclassification:

. / � � % & ' � ( = �  � 9 � A B� 2 C B . /9 � � where (11)

. /9 � � � % & ' �2 ( = �� ) , � , � � � � � 9 � � % & ' � � � � � � � 	 ( (12)

According to Theorem 4, then for large 
 , these sums will be
dominated by the expression � � � � 
 � 	 where

� � �  � 9 � A B� > �2 C B
� > �� ) , � , � � � � � 9 � �

�
� � � � � � � 	� � � � � � � � 	 (13)

For large 
 , the approximation for
H � � . / is asymptotically lin-

ear in 
 with negative slope � - � . A simple approximation is
thus . / � � A �  ! � .
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Fig. 2. THE THREE-RECEIVER BINARY TREE.

If we consider the asymptotic regime of small loss and delay,� � � � � , from relations (i) and (ii) in Theorem 4 it follows that

� � �� � � 	 � 
 � � � � 
 � �
�

� � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � (14)

the minimum being attained, for small enough � � � , where� � � � � � � � and � � � � � � � � � � � . Picking the dominant contribu-
tion to (11) then � � � � � � � � � 
 � � � � yielding � � � 	 �  
 � � � � � .
Thus, in this regime, the probability of correctly identifying the
topology is controlled by the smallest loss rate or link utiliza-
tion.

The above argument can be formalized using Large De-
viation theory. However, calculation, of the decay rate ap-
pears computationally infeasible, although the leading exponent� � � � � � � 
 � � � � can be recovered in the small � � � regime.

B. Comparative Performance of Loss and Utilization-Based
Classifiers

As an example we consider the three receiver tree with uni-
form link probabilities � ! � � � � � ! and � 
 � � � � � 
 ; see Fig-
ure 2. The topology is correctly inferred when nodes 4 and
5 are grouped together; this requires " �  � � � � 
 � # " �  � � � � � �
and " �  � � 
 � � � # " �  � � 
 � � � . The argument controlling the
misclassification probability is � �

�
� � � � 
 � � � $ � � � � � 
 � � � ��

� 
 � � � � � � $ � � � 
 � � � � � . We plot this as a function of the com-
mon probability � in Figure 3. The curve is approximately lin-
ear in � for small � � % & � , in agreement with (14). As �
increases, � reaches a maximum at about � � � ' � ( � � � ' � ),
then decreases to � . Thus in this homogeneous tree, the misclas-
sification probability is minimized when � � � ' � .

We compare the relative performance of the loss and utiliza-
tion classifiers in Figure 4, indicating the regions where each of
the relevant slopes � ! � � 
 is higher. The loss classifier is best
when loss rates are higher than about � ' � (i.e., � 
 ( � ' � � or
when utilization is high (i.e., low � ! ). However, it is outper-
formed by the utilization classifier when there is low utilization
(i.e. high � ! ).

C. Performance of JBT

In this case, the analysis of the misclassification probabil-
ity is complicated by the fact that JBT uses the misclassifica-
tion estimates to take grouping decisions. Here, to illustrate its
modes of misclassification and assess its relative benefit with
respect to BT we analyze the performance of JBT in the three
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Fig. 3. THREE-RECEIVER TREE. Asymptotic slope of misclassification proba-
bility for a single classifier, as function of uniform link probability �
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Fig. 4. THREE-RECEIVER TREE. Partition of parameter space
) � � * � � +

where
loss or utilization estimator has better performance, i.e. largest asymptotic
slope for misclassification probability. Note � � � � � .

receiver binary tree scenario in Figure 2 with uniform link prob-
abilities. In JBT, the topology is correctly inferred when for
the chosen performance measure " �  � � � � 
 � # " �  � � � � � � and" �  � � � � 
 � # " �  � � 
 � � � . To keep the complexity manageable,
we focus on the first event and assume misclassification occurs
when " �  � � � � 
 � � " �  � � � � � � , i.e., when

� �  � � � � 
 � � � # � .
The behavior of the classifier is then completely character-

ized by the bivariate random variable � �  � � � , �  �
 � , �  �! � where

, �  � � � - . / � � � � � � �� - . / � � � � � � � . From (6), the misclassification estimate

for both performance measures is � � � �  �� � � � � � & 0 1 2 , �  � 2 � ;
the joint algorithm groups the nodes based on loss information
when 2 , �  �
 2 � 2 , �  �! 2 and on utilization otherwise (we assume
ties are resolved in favor of loss). Misclassification occurs when
the chosen performance measure results in grouping the wrong
pair; this happens when 2 , �  �
 2 � 2 , �  �! 2 and , �  �
 # � or when2 , �  �! 2 3 2 , �  �
 2 and , �  �! # � which simply amounts to the con-

dition , �  �
 � , �  �! ( � . The misclassification probability is then

� �� 4 � 5 6 , �  �
 � , �  �! ( � 7 (15)

Normal Approximation. We now consider the asymptotic behav-
ior of � �� . An application of the Delta method (see Chapter 7 of
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Fig. 5. JOINT CLASSIFIER. Contour plot of the ratio of the (log-scale) mis-
classification probability asymptotic slope between the joint and best basic
classifier.

[17]) shows that as � � � , � � � � � � � � � 	 , where � 
 � � � 
 � � 	 ,
� 
 � � � � � � � �� � � � � � � � 
 � � � 	 with continuous � , converges in distri-
bution to a bivariate Gaussian random variable with mean zero
and covariance matrix � � 
 � � � � � � 	 
 � � � � � 	 	 � � � � � � � �

� � � � � � 	 
 � � � � � 	 	 	 , where � � � � � � the asymptotic covari-
ance matrix of � � � � � � 
 � � 	 and � 	 denotes the transpose.
( � � � � � � can be computed generalizing the approach used in [8]
to compute � � .)

Therefore, we have the following approximation

� �� 
 � � � � �� 

� � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � �  � (16)


 � � � � ! " � � � � �� � � � � �� # � � � � � � � � � � � � �� � � � � � � � � � �
(17)

where for large � , we consider the leading exponential order.
The infimum in (17) is � $� 
 � � � � � 	 � � � %� � � � � � � 	 	 , where

� � 
 � � &� 
 � &� 	 
 � � &� 
 � � &� 	 is the tangent point between the

line � � � �� � � � � �� 
 ' and the ellipse of the family � � � � � � � 	 �
� � %� � � � � � � � � 	 	 
 ( $ parameterized in ( . Thus, as � goes to
infinity we expect the curve

) � � � �� vs. � being asymptotically
linear with negative slope � $� * � . A simple approximation is then

� �� 
 � � �
� �� � $ . Moreover, the minimizing pair � � � � �� 
 � � � �� 	 


� � &� 
 � � &� 	 indicates that misclassification most likely occurs by
having the two estimated misclassification probabilities equal,
loss and utilization yielding two different pairs for grouping, and
picking the wrong pair.

To illustrate the results, we study the relative performance of
JBT by comparing the asymptotic slope of the logarithm of the
misclassification probability � $� with that of the best single clas-
sifier. This is computed by considering the leading exponential

order approximation � � 
 � � � � � � � � � � � � �� � � � � � � �  
 � � �
� � � $ of

the misclassification probability in BT. Figure 5 shows the con-

tour plot of the ratio

� ��
+ ! " , � � � � � �� - of the (log-scale) asymptotic

slopes as function of link characteristics. � . � 
 . � 	 . JBT per-
forms better than either version of BT for a significant range
of values (the region within the contour line corresponding to
1). The performance improvement is more pronounced in the

region where the loss and utilization classifiers have similar per-
formance (which corresponds to the line separating the two re-
gions in Figure 4) and loss and utilization estimates have low
correlation (which occurs when . � # . � ). This is not surpris-
ing since we expect that: (i) little improvement can be achieved
when one classifier significantly outperforms the other; and (ii)
strong correlation offsets the benefits of using both loss and uti-
lization estimates.

To show the effect of correlation, consider the case � � 
 � � ,
i.e., when the loss and utilization classifiers have the same per-
formance. In this case, it is easy to verify that � $� 
 $% 
 $ � $� ,

where % denotes the coefficient of correlation of � � � �� and � � � �� .
At one extreme, % 
 / and � $� 
 � $� , i.e., � �� 
 � � : we have
maximal correlation between the loss and utilization classifiers
and JBT cannot provide any performance improvement; at the
other extreme, % 
 ' and � $� 
 � � $� , i.e., � �� 
 � �� � �� : we have
statistical independence and the probability of misclassification
is the product of the two misclassification probabilities.

From Figure 5 we also observe that JBT does not always pro-
vide better performance. In this example, we have that under
very high or very low utilization the loss and utilization clas-
sifiers, respectively, have better performance than JBT. In these
cases, because of the high variance of the misclassification prob-
abilities estimates, JBT is likely to mistakenly give preference
to the worst performance measure.

VI. EXPERIMENTAL EVALUATION

In this section we evaluate the performance of JBT and com-
pare it with that of BT through two types of simulation. In model
simulations delay and loss are chosen to follow our statistical
model, allowing us to test algorithm performance in the setting
on which our analysis is based. Network simulations, using the
ns [13] simulator, test the algorithms in a more realistic setting,
where delay and loss are due to queueing delay and buffer over-
flows at nodes as multicast probes compete with background
TCP/UDP traffic.

Model Simulation. We conducted 10000 experiments over ran-
domly generated 15 node binary trees. In Figure 6, we plot the
fraction of incorrectly classified topologies as a function of the
number of probes for the different classifiers. We considered
two regimes: a light load regime with low loss (randomly chosen
between 1% and 5%) and utilization (randomly chosen between
10% and 40%), and a heavy load regime with higher loss (ran-
domly chosen between 1% and 20%) and utilization (randomly
chosen in between 30% and 80%).

In both cases, the joint classifier dramatically outperform the
loss and utilization classifiers with a difference in accuracy al-
ready of more than one order of magnitude in accuracy for just
400 probes.

The accuracy of our approach to joint classification lies in that
of the misclassification probability estimates. In Figure 6 we
also superimposed the mean over the experiments of the topol-
ogy misclassification probability estimates. From the Figure, we
observe that the curves well track the actual slopes, bound from
above the actual values and preserve their relative order.

We can use the topology misclassification probability esti-
mate to determine the number of probes required to achieve a
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Fig. 6. MODEL SIMULATION. Fraction of incorrectly classified topologies and misclassification estimates for different classifiers as function of number of probes:

(a) light load scenario; (b) heavy load scenario.

JBT�
0.05 0.1 0.2

fract. of mis. topologies 0.003 0.008 0.032
average # of probes 145 117 86

BT (loss)�
0.05 0.1 0.2

fract. of mis. topologies 0 0 0.011
average # of probes 415 318 240

TABLE I

ACCURACY OF THE INFERRED TOPOLOGY. FRACTION OF MISCLASSIFIED

TOPOLOGIES AND AVERAGE NUMBER OF DISPATCHED PROBES FOR

DIFFERENT VALUES OF � .

desired level of accuracy of the inferred topology. The idea is to
proceed by dispatching probes until the estimated misclassifica-
tion probability is below a given threshold

�
corresponding to a

desired level of accuracy. Thus, for example, to insure a proba-
bility of misclassification no greater than 0.05, we send probes
until � � � � � � � � � � � .

We performed 1000 experiments over random generated 15
node binary trees. In each experiment probes were dispatched
until the misclassification probability fell below a given thresh-
old

�
and we verified whether the inferred topology was correct.

For JBT and BT under the light load regime, we summarise the
results in Table I where, for different values of

�
, we display the

average number of probes that were dispatched and the fraction
of topologies that were misclassified. Since the estimate bounds
from above the misclassification probability, it is no surprise that
the fraction of misclassified topologies is well below the chosen
threshold. Observe that the number of probes required by JBT
is about one third of those required by BT with loss.

Finally, to illustrate the benefit of combining loss and utiliza-
tion measurements we compare JBT with a simpler approach
which simply consists in choosing among the inferred topolo-
gies separately computed with the loss and utilization classifiers

32

65
4 7

8

0

1

11109

1Mb/sec, 10ms

5Mb/sec, 50ms

Fig. 7. ns SIMULATION TOPOLOGY.

that with the smallest misclassification probability estimate. De-
note 	 � � �
 the topology inferred by classifier

�
,

� � 
 � � � � and

� � � � � �
 its estimated probability of misclassification. We select

	 � � �� � � � � 	 � � �� , where � � argmin 
 � � � � � � � � � � � �
 . In Figure 6

we also superimposed the fraction of times 	 � � �� � � � was incorrect.
This approach yields more accurate results than either loss and
utilization classifiers, yet not as accurate as JBT: the distance
from the JBT curve quantifies the significant gain achievable by
the adaptive scheme which use both performance measures; the
fact the two curves are parallel suggests that misclassification is
ultimately dominated by the same event in both cases.

TCP/UDP Network Simulation. The ns simulations used the
topology shown in Figure 7. We arranged for some heterogene-
ity with the interior links having higher capacity (5Mb/sec) and
propagation delay (50ms) then at the edge (1Mb/sec and 10ms).
Each link is modeled as a FIFO queue with a 20-packets buffer
capacity.

The root node � generates probes as a 20Kbit/s stream com-
prising 40 byte UDP packets according to a Poisson process with
a mean interarrival time of 16ms. The background traffic com-
prises a mix of infinite data source TCP connections (FTP) and
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Fig. 8. ns SIMULATION. Fraction of incorrectly classified topologies for dif-
ferent classifiers as function of the number of probes.

exponential on-off sources using UDP. Averaged over the differ-
ent simulations, the link loss ranges between � � and � � � and
link utilization ranges between � � � and � � � .

Figure 8 plots the fraction of incorrectly identified topologies
over 100 simulations. The relative accuracy among the different
classifiers is in good agreement with the results from the model
simulations. Performance of the utilization and joint classifiers
are somewhat inferior due to: (i) wide spread of link utilization
values among the different links; (ii) presence of spatial corre-
lation among probe delays. In the simulations, probes are more
likely to experience similar level of congestion on consecutive or
sibling links than dictated by the modes independence assump-
tion. We calculated the off-diagonal elements of the correlation
matrix of the actual link delays. The mean was 0.021 and the
maximum 0.17. Despite correlation affected its accuracy, JBT
shows, albeit reduced, performance gain over BT.

In the simulations we also observed the presence of short-
term temporal correlation among successive probes that encoun-
tered the same congestion events. This does not affect estimator
consistency, although the convergence rate may be slowed.

VII. CONCLUSIONS

In this paper we have presented an algorithm for the inference
of the multicast tree topology from end-to-end measurements.
The algorithm combines different performance measures and re-
construct the tree by adaptively choosing that which insures the
best accuracy. This is accomplished by a careful enumeration of
all the possible erroneous decisions and by estimation of their
probability. These estimates in turn can be used to determine
the number of probe packets to achieve a desired level of accu-
racy.

We investigated the statistical properties of the algorithm and
showed that it is consistent. Analysis of a simple scenario
showed that it can significantly outperform any of the algorithms
previously considered. We also used simulation to evaluate its
accuracy and found out that, in general, it required many fewer
probes to correctly identify the topology than other approaches.
ns experiments showed that spatial correlation negatively af-
fects its accuracy. We believe that diversity of traffic in real net-
works makes large and long lasting correlation unlikely. We are

currently investigating the effect of correlation on the accuracy
of topology inference algorithms; this is part of a more general
effort to characterize network traffic correlation and its effects
on end-to-end measurements based inference.

Acknowledgment. We thank Don Towsley for useful comments
and suggestions.

APPENDIX

The proof of Theorem 1 is based on the following result. We
will find it useful to identify a subset � of � as a stratum if

� � � � � � � 	 � 
 is a partition of � .
Lemma 1: Let � be a stratum. Then,

(i) a pair of nodes � � � � 
 
 � are siblings if and only if

� � � � � � � � � �
� � � � � � � � � �

�
� � � � � � � 	 � � � � �

�
� �

� � � � � � � � � (18)

(ii) if � � � � 
 
 � are such that

� � � � � � � � � �
� � � � � � � � � � � � � � � � � (19)

then � � � � 
 are sibling;
(iii) if � � � � 
 
 � is a pair of sibling nodes, then � � � � � � � 
 � �

� � � � � � � 
 is a stratum.

Proof:. Observe first that by definition of stratum, if � 	 � , then
no ancestor or descendent of � can belong to � . (i) the only if
part follows from the observation that if � and � are sibling, then� � � � � �  � � � � ! � � � � ! � � � for any ! 	 � � � � � � 
 which implies

� � � � � � � � � � � ! � � � � ! � � � . For the if part assume that � � � � 
 "� satisfies (18) and suppose � and � are not siblings. Let ! be
the sibling of � . Then, ! #	 � since, if ! 	 � , � � � � ! �  � � � � � �
implies � � � � ! � � � � � � � � , contradicting (18). Thus, since � is
a stratum, there is a set of nodes 
 � � � � � $ $ $ � � % � 
 
 � � ! � � �
such that & % �

' � � � � � ' � � � � ! � since otherwise & ' ( � � � ) � would
not cover � . Now either � 	 
 or � #	 
 . But � 	 
 implies that� � ) � � �  � � � � � � , ) 	 
 so that � � ) � � � � � � � � � � contradicting
(18) while � #	 
 implies that � � � � ) �  � � � � � � , ) 	 
 so that
again � � � � ) � � � � � � � � contradicts (18). Therefore � and � are
siblings. (ii) then is an immediate consequence of (i) and (iii)
follows immediately from the definition of stratum.

Proof of Theorem 1. It suffices to observe that in DBT, at the
beginning of each iteration, � � is a stratum; therefore, the pair of
nodes which minimizes � � $ � $ � is always a pair of sibling nodes.
This property holds before the first loop ( � is a stratum), and
(ii) and (iii) of Lemma 1 ensure it holds subsequently.

Proof of Theorem 3. Since � * % + � � � � � converges almost surely to
� � � � � � , then, with probability 1, for all sufficiently large , , the
relative ordering of the � * % + � � � � � is the same as that of � � � � � �
(which observe can be different for loss and utilization). Then, it
suffices to observe that for all sufficiently large , , the two pairs
of nodes which minimize � - � $ � $ � and � . � $ � $ � are both siblings
pairs provided � � is a stratum. This property holds before the
first loop ( � is a stratum), and (iii) of Lemma 1 insure it holds
subsequently, irrespectively of the actual pair of nodes selected
for grouping. Then the last two statements directly follows from
standard results.
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Abstractó In this paper we explore the use of end-to-end
unicast traf c as measurement probes to infer link-level loss
rates. We leverage off of earlier work that produced ef cient
estimates for link-level loss rates based on end-to-end multi-
cast traf c measurements. We design experiments based on
the notion of transmitting stripes of packets (with no delay
between transmission of successive packets within a stripe)
to two or more receivers. The purpose of these stripes is to
ensure that the correlation in receiver observations matches
as closely as possible what would have been observed if the
stripe had been replaced by a notional multicast probe that
followed the same paths to the receivers. Measurements pro-
vide good evidence that a packet pair to distinct receivers
introduces considerable correlation which can be further in-
creased by simply considering longer stripes. We then use
simulation to explore how well these stripes translate into
accurate link-level loss estimates. We observe good accu-
racy with packet pairs, with a typical error of about 1%,
which signi cantly decreases as stripe length is increased to
4 packets.

I. INTRODUCTION

A. Motivation

As the Internet grows in size and diversity, its internal
performance becomes ever more difficult to measure. Any
one organization has administrative access to only a small
fraction of the network’s internal nodes, whereas commer-
cial factors often prevent organizations from sharing inter-
nal performance data.

One promising technique that avoids these problems,
Multicast Inference of Network Characteristics (MINC),
uses end-to-end multicast measurements to infer link-level
loss rates and delay statistics by exploiting the inherent
(and well characterized) correlation in performance ob-
served by multicast receivers. These measurements do not
rely on administrative access to internal nodes since the in-
ference can be calculated using only information recorded
at the end hosts.

The key intuition for inferring packet loss is that the ar-
rival of a packet at a given internal node can be directly

This work was supported in part by DARPA and the AFL under
agreement F30602-98-2-0238

inferred from the packet’s arrival at one or more receivers
reached from the source by paths through that node; if it
makes it to the receivers, it must have made it to the node.
Conditioning on arrival at a descendent, we can determine
the probability of successful transmission to and beyond
the given node. Efficient inferencing algorithms are given
in [2] for loss, [15] for delay distributions, [7] for delay
variances, and [3] for inferring the logical multicast tree
topology itself.

Although significant advances have been made in the
use of multicast measurements for inferring internal net-
work behavior, it suffers from two serious deficiencies.
First, there remain significant portions of the Internet that
do not support network-level multicast. Second, the inter-
nal performance observed by multicast packets often dif-
fers significantly from that observed by unicast packets.
This is especially serious given that unicast traffic con-
stitutes far and away the largest portion of the traffic on
the Internet. Thus there is a need for techniques based
on end-to-end unicast measurements. This poses a signif-
icant challenge because unicast measurements do not ex-
hibit the well-behaved correlation exhibited by multicast.
Thus, the challenge addressed in this paper is that of de-
veloping unicast-based measurement techniques that cre-
ate sufficient correlation to yield fruitful inference.

B. Contribution

In this paper we adapt the multicast inference tech-
niques proposed in [2] to perform inference of internal
network characteristics from unicast end-to-end measure-
ments. The data for the inference comprises measured
end-to-end loss of unicast probes sent from a source to a
number of destinations. This is used to infer the loss and
delay characteristics of each logical link of the source tree
joining the source to the destinations, i.e., of the composite
paths between its branch points.

The idea is to construct composite probes of unicast
packets whose collective statistical properties closely re-
semble those of a multicast packet. We shall speak of
striping a group of unicast packets across a set of desti-
nations. This entails dispatching the packets back-to-back
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from a source, each packet potentially having a different
destination address. Our premise is that when the duration
of network congestion events exceeds the temporal width
of the stripe, packets should have very similar experience
of the network upon traversing common portions of the
paths to their destinations. If the experiences were iden-
tical, the packets from a stripe that attempt to traverse a
given link would either all be lost, or encounter identical
delay. Hence the packet loss and delays on a given link
would be perfectly correlated within a stripe; the compos-
ite probe would have the same statistical properties as a no-
tional multicast packet that followed the same source tree.
In this case the methods of [2], [7], [15] could be applied
immediately to infer the per link loss and delay statistics
of the logical source tree.

However, correlations within stripes may be less than
perfect in practice. This is because congestion events may
not affect packets uniformly, subjecting stripes to disper-
sion as they travel through a network. Some mechanisms
by which this can happen are the following. Packet loss
will not be uniform during loss events that are narrower
than the stripe, or those that start or stop while the stripe is
in progress. Furthermore, delays will vary due to interleav-
ing of background traffic, e.g., when moving from a low
to a high capacity link. Although such effects should be
small for sufficiently narrow stripes, they will be cumula-
tive. Packet-dropping on the basis of Random Early Detec-
tion (RED) [9] is another mechanism by which packet loss
may become decorrelated. It remains to be seen whether
this mechanism will be widely deployed in communica-
tions networks. On the other hand, the use of RED to
merely mark packets will not break correlations.

This motivates four strands of work in this paper:
(i) determining the magnitude of imperfect correlations
through experiments on real networks;
(ii) calculating their likely impact on the accuracy of in-
ference methods that assume perfect correlations;
(iii) adopting measurement procedures that reduce the im-
pact of imperfect correlations;
(iv) verifying the accuracy of the approach in simulations.

We extend the packet loss model of [2] by incorporat-
ing an additional parameter for each link that describes the
correlation of loss between different packets of the same
stripe. This is done for binary stripes, i.e., those compris-
ing two packets with different destination addresses. These
additional parameters cannot themselves be determined by
end-to-end measurements, at least not without additional
assumptions relating them to each other, or to the existing
loss rate parameters. These calculations show that the er-
ror in using the loss estimator from [2] is small provided
that the conditional probability of loss of one packet in the

stripe given transmission (i.e., non-loss) of the other, is
small compared with the marginal loss rate in the stripe.
This is a condition that we will verify, at least for end-to-
end paths, through measurement.

By constructing appropriate stripes of composite probes
and selecting subsets of these probes for inference, we are
able to enhance correlations within data used for inference.
This is possible when packet transmissions are correlated
in the sense that a given packet in a stripe is more likely
to be transmitted across a given link when other pack-
ets within the stripe are known to have been transmitted
across the link. By conditioning on the measurable event
that nearby packets have been transmitted end-to-end, we
can raise the likelihood of transmission of a given packet to
an intermediate node closer to one. By sending the stripe
packets to diverse addresses, we can infer the properties of
internal network paths from the measurements.

The rest of the paper is as follows. In Section II we for-
mulate the stripe method, first for the binary tree of depth
two, and then for general trees. We specify a family of
different striping methods. We specify the required cor-
relation assumption between packet transmissions within
stripes, and show that it can be used to construct a hierar-
chy amongst the various striping methods; in particular we
establish an order relation for the degree of correction each
method gives to the bias caused by imperfect correlations.

We use two experimental approaches to evaluate the
proposed method. In Section III we use end-to-end mea-
surement on the National Internet Measurement Infras-
tructure (NIMI) [19] to gather data from a diverse set of
Internet paths. We transmitted stripes between pairs of
end-hosts and verified that their packet loss statistics were
consistent with the correlation assumptions that underlie
the method. (These stripes were different from those de-
fined above, since all packets in the stripes were sent to
the same destination; see Section III-A for discussion of
this approach.) We also estimated the likely accuracy that
would be obtained by stripe-based inference in the actual
network.

We support this work in Section IV using network level
simulation with ns [17]. By instrumenting the simulation
we can trace the behavior of packets in the network inte-
rior. This allows us first to study the correlation properties
of packets within stripes as they are transmitted across in-
dividual links in the network (rather than just the end-to-
end properties), and second to compare the inferred link
loss rates with actual link loss rates. For the most accurate
choice of striping method we find the typical absolute er-
ror in loss rate inference to be below 1%. We conclude in
Section V.
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C. Related Work

There exist several tools and methodologies for charac-
terizing link-level behavior from end-to-end unicast mea-
surements. One of the first methodologies focuses on iden-
tifying the bottleneck bandwidth on a unicast route. The
key idea is that, in an uncongested network, two packets
(packet pair) sent back-to-back will arrive at the receiver
with a spacing that is inversely proportional to the low-
est link bandwidth on the path. This was noted by Jacob-
son as leading to TCP’s “self-clocking” behavior [10], and
formally analyzed by Keshav [12]. Carter and Crovella
then developed a tool to apply the technique [4], which has
since been refined in [13], [18]. Although these method-
ologies focus on a metric other than loss rate, they are
based on the same idea, namely to send packet pairs (or
stripes) so as to introduce correlation in a controlled man-
ner.

In [5], the authors use end-to-end measurements of
packet pairs in a tree connecting a single sender to several
receivers. Experiments consist of a number of packet pairs
where the packets are sent to different receivers so that all
pairs of receivers are covered. The metrics of interest are
success probabilities of all links in the tree. As the second
packet in a pair may not see the same loss behavior as the
first over the common path, conditional success probabili-
ties are introduced as unknown nuisance variables. Given
an a priori distribution for these two sets of parameters,
the authors then use a Bayesian network approach to deter-
mine a posteriori distributions and, from these, estimates
of the link transmission probabilities. Preliminary results
on the method reported in the paper show promise. Our ap-
proach differs from the approach in [5] in that we consider
a more general form of striping scheme which results in
significantly higher correlation. Thus we are able to con-
tinue to rely on the maximum likelihood estimates derived
for the multicast case.

Last, pathchar [6], [11] triggers ICMP messages at
successive routers on a unicast path in order derive link
bandwidth, round trip link loss rate, and round trip link de-
lay statistics. It accurately estimates link bandwidth pro-
vided that it is low. It has not been well validated in the
case of losses and delays. Moreover, it requires consider-
able time to converge and loses accuracy with asymmetric
round trip paths.

II. INFERENCE METHODOLOGY

A. Models for Trees, Stripes, and Packet Loss

We first develop the framework in which to describe the
propagation of stripes of unicast packets through the net-
work. We represent the underlying physical network as

a graph ����� � ������� ������ comprising the physical
nodes ����� (e.g. routers and switches) and the links �����
between them. We consider a single source of probes
� � ����� and a set of receivers � � �����. We assume
that the set of paths from � to each � � � is stationary and
form a tree ����� in ������� ������; thus two such paths
never intersect again once they have diverged. We form
the logical source tree � � ����� whose vertices � com-
prise �, � and the branch points of �����. The link set �
contains the link ��� �� if one or more of the probe paths
in ����� pass through � then � without encountering an-
other element of � in between. Where applicable, denote
by ���� � � the parent of � � � . We write � � � if � is
an ancestor of � in � .

We will use the notation ���� 	 	 	 � ���� to refer to a stripe
comprising packets dispatched to destination nodes in or-
der ��� 	 	 	 � ��� . We describe the progress of the stripe in
� by the variables 
����, taking the value � if packet �
reaches node �, and zero otherwise. Note 
����� � � iff
packet � reaches its destination node. (We do not label
packets by their destination since we consider stripes with
repeated destinations).

We will find it useful to have a notation describing
composite events at sets of receivers. For � � �� �

��� 	 	 	 � ��� define the binary variable


� �
�

���


�����	 (1)

Thus 
� � � if all packets in � reach their destina-
tions, and � otherwise. We will find it convenient to write

�������� ��� as 
����� �� .

We specify a loss model for the stripes. We assume that
losses are independent between different stripes, and for
packets of the same stripe on different links. For each
� � � let ���� � �� be the set of packets that success-
fully reach (and therefore transit across) �. For � � ����
let ����� denote the probability that all packets in � are
transmitted to node �, conditioned upon having reached
the parent node ����. We do not assume that the marginal
probabilities ����� are equal for all � � ����. For dis-
joint subsets ���� � ���� we write as �������� the
conditional probability that packets in � are successfully
transmitted across link �, given that those in �� are suc-
cessfully transmitted, all packets having reached the parent
node ����. This is expressed in terms of the probabilities
�� as

�������� � ���� 	��������
��	 (2)

With perfect correlations the various �� would be �. The
multicast loss model of [2] is statistically equivalent to the
special case �������� � � and hence ����� all equal
some ��.
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For a given link and stripe width, we expect the structure
of the probabilities �� � to depend on the times between
successive packets. For example, if the packets are widely
separated, then the marginal probabilities ����� will be
equal (or nearly so) while the conditional probabilities �
will be close to the marginal probabilities �. Here, we con-
centrate on the other extreme with back-to-back packets in
order to make � close to �. In this paper we focus on es-
timating transmission probabilities for the first packet in a
stripe. We note however that marginal transmission prob-
abilities can depend on the position of a packet within a
stripe, particularly when the stripe width is not negligible
compared with buffer sizes. However, our methods can be
adapted to focus on other packets within the stripe. This
could be useful if it is desired to infer transmission proba-
bilities for packets in traffic bursts.

B. Inference with Binary Stripes on the Two-Leaf Tree

We first investigate the performance of the inference al-
gorithms from [2] under imperfect correlations. We start
with the two-leaf tree shown in Figure 1, having leaf nodes
� and � with common parent � whose own parent is the
root �. Consider the binary stripe �����. The link prob-
abilities are related to the probabilities of leaf events as
follows:

������

����
� ������������� (3)

����

���
� �������������

����

���
� �������������

where �� is as defined in (1). This is because, e.g.,
���� � ���������������� � ����������������������,
with similar expressions for ��� and ���. With perfect
correlations, �� � �, and hence the � are uniform across
the stripe and may be recovered directly from the leaf
probabilities. These expressions can then be used to es-
timate the � from the leaf events ���� associated with mul-

tiple identical stripes � � �� �� � � � �. To form the estimates
we first replace each expectation in (3) by the correspond-
ing empirical mean, defined here in general:

��� � ���
��
���

�
���
�

� (4)

Taking �� � � then yields the estimates

��� � ���
���� ����� ��� � ����� ���� ��� � ����� ���� (5)

This is effectively the estimator from [2] applied to the
two-leaf tree.

With imperfect correlations, �� cannot be recovered in-
dependently from the leaf expectations. The model is not
identifiable; this was also observed in [5]. Since �� � �,
estimation via (5) is biased, overestimating �� and under-
estimating �� and ��.

C. Enhancing Stripe Correlations

The uncertainty over the values of the � undermines
confidence in using (5) directly. We now propose a modi-
fied striping scheme scheme for which the effective value
of the � is closer to 1. To glimpse the idea behind this,
observe that for the stripe ����� with perfect correlations,
�������� (defined as the conditional probability for the
first packet of the stripe to reach � given that its second
packet reaches �) is actually equal to the probability of
transmission of a packet along the link ��� ��, conditional
upon reaching �. This is because packet � must have been
present at � if present at �. With imperfect correlations,
packet � may not have been also present at �, leading to
underestimation of ��. Our remedy for this is to use longer
stripes, conditioning on an event at � which makes it more
likely that packet � was present at �.

The simplest example of such a stripe is the three-
packet stripe �������. Provided that transmission of
packets within the stripe is strongly correlated (in a sense
we make precise below) we expect it to be more likely that
packet � reaches �, upon reception of packets � and � at
receiver �, rather than reception of packet � alone. We for-
malize the required notion of correlation in Definition 1
below.

Upon replacing the reception of packet 2 with the recep-
tion of packets 2 and 3, the analogs of the first and second
relations in (3) are

�������

�����
�

�����

��������
�
�����

����
� �������������� (6)

The parameters �� and �� are estimated by ���
����� ����������� ���� respectively; �� can be estimated similarly us-

ing the complementary stripe ��� �� ��. Comparing with
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(5) we observe that these estimates introduce less bias than
those from two-packet stripes provided that ������� �� �
�������. This is the case provided that transmissions
within a stripe satisfy the following correlation property.

Definition 1: We say that stripe transmission at a node �
is coalescent if for each stripe ���� � � � � ��� routed through
�, and disjoint ���� � ����,

�������� � ��������� for all ��� � ��� (7)
Coalescence is a correlation property. It states that a given
set of packets � is more likely to be transmitted on a link,
the more other packets from the stripe have been transmit-
ted. We will investigate the coalescence properties of real
network traffic in Section III.

With coalescence, whenever we add packets to the con-
ditioning event, the effect is to decrease the estimate of ��
and to increase the estimate of �� or ��. Thus, we can
counteract the bias in the two-leaf stripe, evident from (3),
by using wider stripes.

Theorem 1: Assume transmission is coalescent on the
two-leaf tree and consider a stripe ������ and two disjoint
subsets ���� of ���� such that packets in � have desti-
nation � and packets in �� have destination �. Then for
any ��� � ��,

������

����

�
�������

�����

� (8)

The inequality (8) captures the effect that extending the
stripe reduces the estimate of the transmission rate �� and
so counteracts the bias due to �� 	 �.

Proof: ������ � ������������
�� ���������

��

while ���� � ����
������

��. Hence ������
���� �

������������� � �������������� � �������
����� .

Example: the 4-packet stripe. Theorem 1 suggests we can
further reduce bias by lengthening the stripe length. Con-
sider, for instance, the stripe ��������� and compare its
estimation properties with those of its substripes �������
and �����. By Theorem 1 we have the following ordering
between the functional on which estimates of �� are based
in each case:

��������

������
�
�������

�����
�
������

����
� (9)

The estimators are obtained by replacing each �� by the
corresponding empirical mean �� from � stripes. By the
Law of Large Numbers, the same inequalities hold for the
estimates with probability 1 as � grows to infinity.

D. Extension to General Trees

We describe estimators that extend the foregoing
method to treat general logical source trees, i.e., trees in

which the depth and branching ratio can be greater than
�. Consider first the case of a depth � tree with an arbi-
trary number of leaves. One approach is to stripe across
all receivers and then to adapt the estimator from [2] for
nodes with arbitrary numbers of offspring in order to esti-
mate the link probabilities. A potential problem with this
approach is that the statistical properties of stripes may not
reflect those of general traffic if their width is not negligi-
ble compared with buffer sizes. For the same reason, vari-
ation of stripe width within a single set of measurements
may introduce non-uniform bias into the link probability
estimates, depending on the local branching ratio. Instead,
here we focus on combining inference from fixed-width
stripe measurements on embedded subtrees.

Consider an arbitrary tree with leaf set �. For each node
� let ���� denote the subset of leaves descended from
�. Let 
��� denote the set of ordered pairs of nodes in
���� descended through different children of �. For each
������� � 
���, consider the embedded two-leaf binary
tree spanned by the nodes �� �������. By combining esti-
mates from measurements of stripes down each such tree,
we shall estimate the characteristics of the common path
from � to �.

Each stripe will follow the same pattern. We fix a tem-
plate for a stripe of �� packets by partitioning ��� � � � � ���
into two sets ��� ��. For each ordered pair ���� ����� of
distinct receivers in ���� we form a stripe that sends pack-
ets in positions in �� to ��� and packets in positions in
�� to ��� . More formally, this is the stripe ����� ��� �

���� � � � � ���� where �� � ��� when � � ��.
The relation between the leaf probabilities and the trans-

mission probabilities on the composite path from � to � are
expressed through

����
����

�������

� ������
���������� (10)

where �� �
�

��� �� and �� �
�

��� �� . For each non-
leaf and non-root node �, each pair ��� �� � 
���, the mea-
surements with � stripes of type ���� �� thus gives rise to
an estimate

�� ���
� �

����

�����������

� (11)

In the experiments described in this paper we combine all
possible estimates through their arithmetic mean

��� � �
�����
�

����������

�� ���
�
� (12)

For leaf nodes � take ��� as the measured transmission
probability over all stripes of packets to �, and set ��� � �
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by convention. The link probability estimates are then ex-
pressed as quotients

��� �
���� ������� � �� �� (13)

E. Sampling and Statistical Issues

Earlier in this section we proposed using wider stripes
as a way of counteracting the inherent bias in using esti-
mators that do not take explicit account of the imperfect
correlations between stripe packets. We now make a num-
ber of further observations of the statistical implications of
using the stripe approach.

First, increasing the stripe width while keeping the total
number of packets sent constant increases the variance of
the estimates. This is because the number of stripes sent is
in inverse proportion to their width.

Second, network characteristics may not be uniform
across a stripe e.g., if stripe width is comparable in size to
that of a buffer. Here we focused on estimating transmis-
sion probabilities for the first packet; other templates could
direct attention to other positions. We note that if marginal
transmission rates are highly heterogeneous across differ-
ent positions in a stripe, then the assumption of indepen-
dent packet loss on different links may not hold. This is be-
cause its expected loss rate of a packet at a given node can
depend on the occurrence of losses closer to the source of
packets in earlier stripe positions. These cause the packet
to advance its position in the stripe and consequently ex-
perience a different loss rate.

Third, there is a phenomenon during TCP slow start
that can lead to every other or every third packet being
lost. Once TCP increases its window enough to “fill the
pipe,” which corresponds to transmitting at the bottleneck
rate, then the next set of acknowledgements effectively in-
creases the sending rate by either a factor of two (if the re-
ceiver acknowledges every incoming packet) or a factor of
1.5 (if the receiver uses the common “ack every other” pol-
icy). If the bottleneck buffer is full at this point, then either
every other or every third packet will be lost at the bottle-
neck due to the mismatch between the bottleneck rate and
the higher sending rate. See Figure 2 of [8] for an illus-
tration. Accordingly, there may be buffer-filling patterns
present in the network that impart particular loss patterns
on the elements of a stripe. The prevalence of the “slow
start” pattern will depend on how often TCP connections
in slow start dominate the consumption of buffer space at
the bottleneck link.

Fourth, we have observed that imperfect correlations at
a node bias inference for parent and child links in opposite
directions. Hence bias is a second order effect spatially,
depending not on the absolute loss correlation, but rather

on the manner in which it changes from node to node in
the network. In the special case of the probabilities �� �
being uniform over all links, imperfect correlations actu-
ally leave the estimates (5) unbiased for internal links (i.e.
all those except the leaf links and root link), though this
special case seems highly unlikely in practice.

Fifth, the analysis of estimator variance for multicast in-
ference carries over when � � �. We refer the reader to [2]
for details. Here we mention that in a regime for which all
loss rates �� � �� �� are close to zero, the estimator ���
has variance which behaves as ���

�
�� � ���

�
�
, asymp-

totically for large numbers � of probes. To leading order,
this form is independent of topology.

III. NETWORK EXPERIMENTS

The estimation techniques described in Section II rely
on conditional probabilities of packet transmission within
stripes being close to �, and on the coalescence property
in order to counteract the bias due to shortcomings with
this assumption. In this section we investigate confor-
mance of both of these assumptions to measurements of
stripes transmitted across a number of end-to-end paths
in the Internet. Although these experiments did not ac-
cess the transmission properties of individual links (logis-
tically very difficult to measure), they would be able to
detect link-wise departures from the assumptions, since
these would also be reflected in the properties of end-to-
end paths over non-conformant links.

A. Measurement Infrastructure

We conducted the experiments using the National In-
ternet Measurement Infrastructure (NIMI) [19]. NIMI
consists of a number of measurement platforms deployed
across the Internet (primarily in the U.S.) that can be
used to perform end-to-end measurements. We made the
measurements using the zing utility, which sends UDP
packets in selectable patterns, recording the time of trans-
mission and reception. We extended zing to transmit
unicast stripes to multiple destinations, minimizing the
spacing between packets in a stripe by precomputing the
packets to send (including their MD5 integrity checksum,
the most computationally expensive part of constructing
a zing packet) and then transmitting them with back-
to-back system calls, resulting in inter-packet spacings of
about ���sec.

A key point is that for our measurements we did not ac-
tually send packets to multiple destinations, because we
had no way of calibrating true inference of internal loss
characteristics, which would require measurement inside
the network. Instead, the results we report are all for
stripes sent to the same destination, with the goal being
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Fig. 2. SCATTER PLOT OF TRANSMISSION PROBABILITIES

IN 28 NETWORK EXPERIMENTS. Conditional vs. marginal
end-to-end transmission probabilities. Probabilities for 3-
packet stripes mostly meet or exceed those for 2-packet
stripes.

to assess the conditional loss probability and coalescence
properties.

We gathered a total of 63 successful measurements be-
tween 35 NIMI sites, each measurement recording at both
sender and receiver the transmission of either 100,000
flights of stripes of 3 packets, with separations exponen-
tially distributed with a mean of 100 msec; 10,000 flights
of stripes of 10 packets, separated by a mean of 300 msec
(we also analyzed the first 3 packets in each stripe as
another dataset of 3-packet stripes); or 20,000 flights of
stripes of 3 packets, separated by a mean of 500 msec.
All measurements were made at either 2PM EDT (a busy
time) or 2AM EDT (a fairly unloaded time). There was no
noticeable change in behavior as we varied the inter-stripe
spacing from 100 msec to 500 msec.

Of the 63 traces, 7 exhibited no loss whatsoever, and
consequently we had to eliminate them as they could not
be used to study loss inference. Of the remaining 56, fully
half (28) had conditional loss probabilities of 1, reflect-
ing perfect loss correlation just as we would have if using
multicast traffic instead of unicast. This finding is highly
encouraging for the efficacy of unicast loss inference.

In the remainder of this section, we analyze the proper-
ties of the 28 traces that did not exhibit perfect correlation.

������� � � � � ��� ������� � � � � � � ��
� � � � � � � � � � � � � � �

min. 1.0000 1.0000 1.0000 1.0000 1.0000
mean 1.0189 1.0002 1.0000 1.0001 1.0001
max. 1.1812 1.0021 1.0003 1.0005 1.0003

TABLE I
COALESCENCE OF TRANSMISSION IN NETWORK

EXPERIMENTS. RATIOS OF END-TO-END CONDITIONAL

TRANSMISSION PROBABILITIES IN STRIPES OF WIDTH 2 TO

6. MINIMUM, MEAN AND MAXIMUM OF RATIOS OBSERVED

IN 19 TRACES STRIPES OF WIDTH 10. MINIMUM RATIO 1
CONFORMS WITH COALESCENCE PROPERTY.

B. Transmission Probabilities

Marginal Probabilities. The packet loss rate varied be-
tween zero and about ��� over the experiments. The
marginal packet loss rates for different positions in the
stripe displayed some heterogeneity. The heterogeneity
was most pronounced at the start of the stripe, with the loss
rate for the second packet in a stripe being typically 1.19
times greater than that of the first. Moving further along
the stripe, loss rates differed between successive positions
typically by up to a typical factor of 1.03.
Conditional Probabilities. We can estimate the error in-
volved in the stripe method by comparing conditional and
marginal transmission probabilities within the stripe. A
scatter plot of the conditional vs. marginal probabilities
for 2 and 3 packet stripes in 28 experiments is shown in
Figure 2. Higher points represent smaller relative error;
conversely for points near the line the error is of the same
order of magnitude as the marginal probability to be esti-
mated. For both 2 and 3 packet stripes, the end-to-end con-
ditional transmission probabilities �� are noticeably larger
than the marginal transmission probabilities ��, with those
for the 3 packet stripe being at least as large as those for the
2 packet stripes in almost all cases. A conditional probabil-
ity of 1 would signify perfect correlations. We can char-
acterize this error arising from �� � � through the ratio
��� ������� ��� when �� �� �. This represents the propor-
tion of the reported loss rate which is typically in error due
to imperfect correlations. For 2-packet stripes, the median
value of this ratio was ����. (So, for example, an esti-
mated loss rate of �� would be in error by about �����).
The median ratio fell to to ���� for 3 packet stripes.
Coalescence We calculated end-to-end conditional trans-
mission probabilities ������� 	� � � � �� for stripes of width
� between � and 
. (When � � � this just denotes the
marginal probability �����). A necessary condition for co-
alescence is that the ratios ������� � � � � ��� ������� � � � � ��
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�� be � �. We determined the ratios over 19 experiments
with stripes of width 10. In only two instances were the
ratios less than 1, and in these cases by a magnitude of
only about ����. This is a far smaller magnitude than that
by which the ratio typically exceeds 1, as is seen from the
statistics displayed in Table I: the minimum, mean, and
maximum for each � over the 19 experiments. The ratios
are largest for � � �, falling off close to � as � increases
beyond �. This suggests that the additional bias correction
obtained by increasing stripe width is almost negligible for
stripes wider than 3 packets, at least under the network
conditions and the range of loss probabilities exhibited in
these traces.

C. Interpretation

The network experiments are encouraging for unicast-
based inference. First, in half of the traces the stripes ex-
hibited perfect correlations. If this property were repro-
duced in stripes to multiple destinations, their statistical
properties would be identical to that of multicast traffic for
the purposes of link loss inference. Second, in traces with
imperfect correlations, the conditional transmission proba-
bilities within the stripe were considerably higher than the
marginal probabilities, slightly more for the 3 packet stripe
than the 2 packet stripe. This indicates that the bias due
to ignoring the imperfection in correlations is relatively
small. Third, traces exhibited coalescence for the stripe
widths considered, indicating that the bias can be compen-
sated for by using wider stripes, although the incremental
benefit grew smaller for larger stripe widths. These factors
lead us to expect that striped unicast probing will be quite
effective for loss inference under real network conditions.
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Fig. 4. CONDITIONAL TRANSMISSION PROBABILITIES IN

SIMULATIONS. Scatter-plot of conditional vs. marginal link
transmission probabilities for 2, 3 and 4 packet stripes. Con-
ditional probabilities increase with stripe width.

IV. SIMULATION RESULTS

A. Methodology

The experiments of Section III give us confidence that
the statistical properties of stripe transmission make stripes
suitable as probes for inference. However, the experiments
do not enable us to corroborate the accuracy of the estima-
tors for real network traffic. Instead, we employ simulation
to get a sense of how accurate the estimators might be in
practice.

We used the ns simulation environment [17]; this en-
ables the representation of transport-protocol detail of
packet transmissions, with packet loss due to buffer over-
flows at nodes as stripes compete with background traffic.
The simulations reported in this paper used the topology
of Figure 3. The different link speeds and delays are in-
tended to characterize low speed/low delay links at a net-
work edge connected by high speed/high delay links in the
network interior. The goal is to study the methodology in
a simplified environment to look for major problems, not
to make a definitive assessment of the methodology.

Background traffic comprised a mixture of sessions over
TCP and exponential on-off sources. There were on aver-
age 11 sessions per link direction. The buffer on each link
accommodated 20 packets. Measurement probes com-
prised stripes with a 1�sec interpacket time. Stripes were
generated periodically with an inter-stripe of 16 msec. The
tree was covered by cycling through thirty stripes ���� ��
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Fig. 5. Inferred vs. actual link loss rates in simulations. 3 packet
and 2 packet substripes. Scatter plot for 100 experiments.

over pairs of distinct receivers �� �. During an experiment,
each stripe was transmitted 1,000 times. We conducted a
set of 100 experiments using 4 packet stripes. To com-
pare the estimator performance under the different stripe
lengths we considered the 2 and 3-packet substripes ob-
tained using the first two and three packets in each stripe.
In order to evaluate the method, the inferred loss rates were
compared with internal link loss rate as determined by in-
strumentation of the simulation. Link loss rates were com-
puted considering only the first probe in the stripe.

B. Conditional and Marginal Transmission Probabilities

We first examine the statistical properties of the under-
lying link loss processes. Figure 4 is a scatter plot of con-
ditional vs. marginal transmission probabilities for 2, 3
and 4 packet stripes. Observe that conditional probabili-
ties increase with stripe width. We summarize the likely
relative errors in each case though the statistics of the ratio
�� � ������ � ��� of conditional to marginal loss probabil-
ities. For 2 packet stripes the median ratio was ���� (i.e.,
a relative error of 32%). The ratio fell to ���� for 3 packet
stripes, and further to ���� for 4-packet stripes.

These errors are somewhat greater than those observed
for end-to-end transmission in the network experiments.
We believe this may be associated with a greater hetero-
geneity in marginal transmission rates that we observed
in the simulations; loss rates grew by about 30% between
successive positions for the first 4 packets of a stripe. Re-
call from Section III-B that in the network experiments, the
largest such ratio was 19%, and typical ratios were 3%.
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Fig. 6. Inferred vs. actual link loss rates in simulations. 4
packet stripes and 3 packet substripes. Scatter plot for 100
experiments.

stripe width
2 3 4

mean 0.0099 0.0075 0.0063
s.d. 0.0064 0.0057 0.0052

TABLE II
ESTIMATION ERROR IN SIMULATIONS AS FUNCTION OF

STRIPE WIDTH. MEAN AND STANDARD DEVIATION OF

ABSOLUTE DIFFERENCE BETWEEN INFERRED AND ACTUAL

LOSS RATES. ERRORS ARE MINIMIZED FOR 4-PACKET

STRIPES.

The stronger growth in loss ratios along the stripe in the
simulations may be due to the larger size of the stripe rel-
ative to buffer size (20 packets) as compared with that in
real networks.

C. Accuracy of Inference

Finally, we compare inferred and actual link loss rates
in the simulations. We display scatter plots of inferred vs.
actual loss for 2 and 3 packet stripes in Figure 5, and 3 and
4 packet stripes in Figure 6. The same number of stripes
was used in each case. From the figures we observe that
accuracy increases with wider packet stripes as exhibited
by the clustering about the line � � �. In Table II we sum-
marize the statistics of the absolute error, i.e., the modulus
of the difference between the inferred and actual link loss
rates. This is just under 1% in the worst case, i.e., for the 2
packet stripe, and 0.63% in the best case, i.e., the 4 packet
stripe. Thus, by exploiting the coalescence property, we
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ha ve achieved a 40% reduction in absolute error, by sim-
ply increasing the the stripe length from two to four.

V. CONCLUSIONS AND FURTHER WORK

In this paper we have proposed a method of using end-
to-end unicast probing to infer the loss characteristics of
the network interior. The method relies on using collec-
tions of unicast probes, called stripes, dispatched back-to-
back to different destinations, in order to mimic the effect
of a notional multicast packet that followed the same path.
We infer internal loss rates by applying an estimator devel-
oped for multicast inference to the unicast receiver traces.
This estimator is unbiased when the transmissions of a
stripe’s probes on a given link are perfectly correlated. Im-
perfect correlations lead to bias, but we prove that this can
be compensated for by using wider stripes, provided that
the stripe transmissions obey a certain correlation property
that we call coalescence. This is the property that success-
ful transmission of a given packet in the stripe becomes
more likely when more other packets from the stripe have
been successfully transmitted.

Our network experiments show that for end-to-end
transmission, correlations within stripes are very high,
even perfect in some cases. Moreover, the coalescence
property was found to hold in virtually all cases examined.
Together these properties lead us to expect that inference
from striped unicast probes will be effective in estimating
link loss rates.

Our next step in network experimentation is to directly
assess the method by performing corroborative measure-
ments in the network interior. This entails taking measure-
ments on paths over which probe traffic flows; then com-
paring actual loss rates with inferred loss rates on internal
paths.

Currently, such corroboration is available to us only in
simulation experiments. The ns simulations showed good
agreement between inferred and actual loss rates; the typ-
ical error in these experiments was about 1% for the 2-
packet stripe, falling to 0.63% when the stripe width was
increased to 4.

Our next step in simulation will be to investigate the
magnitude of these effects for systems with larger buffers
and more diverse background traffic, which are more rep-
resentative of actual networks.

In this paper we have concentrated on estimation of link
probabilities for the first packet of a stripe. However, due
to heterogeneity of loss along the stripe, such estimates
may not be representative of typical packets, e.g., pack-
ets contained within a burst. Clearly, the present method
could be extended, through use of other stripe templates,
to estimate link probabilities for packet in positions other

than the first. In the future we hope to increase the accu-
racy of inference by tuning the stripe properties to the burst
structure observed in background traffic.

Finally, we remark that a number of other multicast-
based estimators–namely those for delay distributions
[15], for delay variances [7], and logical multicast topol-
ogy [3]–have the potential to be adapted in the same man-
ner as was done for loss estimators in this paper. We feel
that our promising results on unicast-based loss estimation
warrant extending the estimator to these other settings.
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Abstract

There has been considerable activity recently to develop monitoring and debugging tools for a mul-
ticast session (tree). With these tools in mind, we focus on the problem of how to lay out multicast
sessions so as to cover a set of links of interest within a network. We define three variations of this
layout (cover) problem that differ in what it means for a link to be covered. We then focus on the identi-
fiability problem, to determine whether a given set of candidate multicast trees can cover the set of links
of interest; and the minimum cost problem, to determine the minimum cost set of trees that cover the
links in question. We establish efficient algorithms to solve the identifiability problem and show that,
with few exceptions, the minimum cost problems are NP-hard and that even finding an approximation
within a certain factor is NP-hard. One exception is when the underlying network topology is a tree. For
this case, we demonstrate an efficient algorithm that finds the optimal solution. We also present several
computationally efficient heuristics and their evaluation through simulation. We find that two heuristics,
a greedy heuristic that combines sets of trees with three or fewer receivers, and a heuristic based on
generalizing our tree algorithm, both perform reasonably well. The remainder of the paper applies our
techniques to the vBNS and Abilene networks, examining the effectiveness of the different heuristics
and the sensitivity of the costs to the choice of routing algorithm.

1 Introduction

Multicast is a technology that shows great promise for providing the efficient delivery of content from

a single source to many receivers. An interoperable networking infrastructure is nearly in place (PIM-

SM/MSDP/MBGP,SSM) and the development of mechanisms for congestion control and reliable data de-

livery are well under way [3, 7]. However, deployment of multicast applications lags behind, in large part

because of a lack of debugging and monitoring tools. Recently, several promising approaches and protocols

have been proposed for the purpose of aiding the network manager or the multicast application designer in

this task. These include the use of end-to-end measurements for inferring internal behavior on a multicast
�

This work is sponsored in part by the DARPA and Air Force Research Laboratory under agreement F30602-98-2-0238.
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tree [1], the development of the multicast route monitor (MRM) protocol [2], and a number of promising

fault monitoring tools, [10, 13]. All of these address the problem of identifying performance and/or fault

behavior on a single multicast tree.

Although considerable progress has been made in developing tools for a single tree, little attention has

been paid on how to apply these tools to monitor an entire network, or even a subset of the network. We

address this problem; namely, given a set of links whose behavior is of interest, how does one choose a set

of minimum cost multicast trees within the network on which to apply these tools so as to determine the

behavior of the links in question? Resolution of this problem is especially important as poorly designed sets

of measurements can easily overwhelm network resources. The choice of trees, of course, is determined by

the multicast routing algorithm. This raises a related question, namely, does the multicast routing algorithm

even allow a set of trees that that will allow one to determine the behavior of the links of interest. We

refer to this latter problem as the Multicast Tree Identifiability Problem (MTIP) and the first problem as the

Minimum cost Multicast Tree Cover Problem (MMTCP).

We refer to the behavior measurement of a link as a link measure. Note that solutions to MTIP and

MMTCP depend on details of the mechanism used to determine the link measures. Consequently, we

introduce three versions of these problems, the weak, strong, and medium cover problems. Briefly, the weak

cover problem is based on the assumption that it is sufficient that each link of interest appear in at least

one tree. The strong cover problem requires that each link occur between two branching points in at least

one tree. The medium cover problem relaxes this last requirement and instead requires that the set of trees

covering the link provide enough information to determine the link measure of interest.

Briefly, the paper makes the following contributions.

� We establish efficient algorithms for solving the identifiability problems. These are sufficiently gen-

eral to apply to unicast-based end-to-end measurements as well, e.g.,[11].

� We establish that the cover problems are NP-hard and that in some cases, finding an approximation

within a certain factor of optimal is also NP-hard. Thus, we also propose several heuristics and show

through simulation that a greedy heuristic that iteratively combines trees containing a small number

of receivers performs reasonably well.

� We provide polynomial time algorithms that find optimal solutions for a restricted class of network

topologies, including trees. This algorithm can be used to provide a heuristic for sparse, tree like

networks. This heuristic is also shown through simulation to perform well.

� We apply our techniques to the vBNS and Abilene networks, examining the effectiveness of the dif-

ferent heuristics and the sensitivity of the costs to the choice of routing algorithm.
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To motivate the need for different cover problems, let us focus on the MINC approach for inferring

link-level loss behavior [1]. Given a sender and two or more receivers, there exist unbiased estimates of

the packet loss probabilities on each segment of the tree, whether it lies between source and branch point,

branch points, or branch point and receiver. Consider the simple topology illustrated in Figure 1(a). Assume

that only the two trees illustrated in Figure 1(b) and (c) are available to cover links. Suppose that we are

interested in the loss behavior of the set of links
� � � � � � � � � � � � � � � � � � �

. In this case, applying the MINC

technique to the tree in 1(b) will produce estimates for the loss rates for those links. This is an example

where the tree provides a strong cover for the links of interest. Suppose that we are now interested in link
� 	 � � �

. Neither tree provides a strong cover for this link. However, the tree in 1(b) allows us to determine the

loss rate for link
� � � � �

and the tree in 1(c) allows us to determine the loss rate of path
� 	 � � �

. If we assume

that loss events are independent between links, then these loss rates can be used to compute the loss rate for

link
� 	 � � �

. Thus, the two trees provide a medium cover of the set of links
� � � � � � � � � � � � � � � � � � � � 	 � � � �

.
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(a)                           (b)                     (c)

Figure 1: A simple topology (a) with two possible trees: (b) where 2 sends to 6 and 7, and (c) where 1 sends

to 5 and 6.

A weak cover may suffice to provide a warning that some link is causing a problem. This can trigger

more bandwidth and computation intensive diagnostics to determine what link is causing the problem.

A number of end-to-end measurement techniques have been developed for network tomography. In addi-

tion to the MINC approach which applies to multicast, there are several promising unicast-based techniques.

For example, [5, 8] attempt to emulate multicast through the use of packet pairs so that multicast-based anal-

ysis techniques can be applied. An algebraic approach has been proposed in [11] which can be used to infer

link round trip times based on path round trip time measurements. However, none of these deal with the

problem of designing measurements so as to minimize the overhead imposed on the network. We believe

that our techniques can be adapted to be used with these measurement methodologies.

The remainder of the paper proceeds as follows. Section 2 presents the model for MTIP and MMTCP,

as well as the three types of covers we consider. Section 3 describes the efficient algorithms for solving

MTIP. Section 4 introduces several approximation algorithms and heuristics for MMTCP. In Section 5 we

present efficient algorithms that find the optimal MMTCP solution for the special case where the underlying
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network topology is a tree. Section 6 presents the results of simulation experiments on the VBNS and

Abilene networks as well as randomly generated networks. Last, Section 7 concludes the paper.

2 Model and Assumptions

We represent a network � by a directed graph � � � � � � � � � � � � �
where

� � � �
and

� � � �
denote the set

of nodes and links within � respectively. When unambiguous, we will omit the argument � . Our interest

is in multicast trees embedded within � . Let � � � � � �
be a set of possible multicast senders, and let

	 � � � � �
be a set of possible multicast receivers. Let 
 � � � � 
 � � � � 
 � �

denote a directed (multicast)

tree with a source � � 
 �
and a set of leaves � � 
 �

. We require that � � 
 � 
 � and � � 
 � � 	
. Let � be a

mapping that takes a source � 
 � and receiver set � � 	
and returns a tree � � � � � �

. In the context of a

network, � corresponds to the multicast routing algorithm. Examples include DVMRP [9], and PIM-DM

and PIM-SM [6]. Let � � � � � � 	 � � � � � � � � � � � 
 � � � � 	 � � � � �
, i.e., � � � � � � 	 �

is the set of all possible

multicast trees that can be embedded in � using multicast routing algorithm � . We shall henceforth denote

� � � � � � 	 �
by � � � � 	 �

, omitting the dependence on � .

We now associate a cost with a multicast tree 
 
 � � � � 	 �
. We assume that it can be expressed as

� � 
 � � � �� � �
� � � � � �

� � �
(1)

where the first term can be thought of as a “per tree cost” and the second is a “per link cost”. The two

problems of interest to us are as follows:

Multicast Tree Identifiability Problem. Given a set of multicast trees � � � � � � 	 �
, and a set of links

� � �
, is

�
identifiable by the set of trees � ?

Minimum cost Multicast Tree Cover Problem. Given � � 	 � �
and

� � �
, what is the minimum cost

subset of � � � � 	 �
sufficient to cover

�
? In other words, find � � � � � � 	 �

that covers
�

and minimizes

� � � � � �
� �  

� � 
 �

We distinguish three types of solutions to both of these problems. These solutions differ in what exactly

is meant by a cover. We say that a node ! is a branch point in tree 
 if ! is either a root or a leaf, or ! has

more than one child. A path " � � ! # � ! $ � % % % � ! & �
is said to be a logical link within 
 if ! # and ! & are branch

points, ! $ � % % % � ! & ' # are not, and
� ! ( � ! ( ) # � 
 � � 
 �

, * � + � % % % � , - + .

. Strong cover: Given a set of trees � , � is the strong cover of link " � � / � ! �
if there exists a 
 
 �

such that both
/

and ! are branch points in 
 . � is the strong cover of a link set
�

if 0 " 
 �
, � is the

strong cover of " .
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� Medium cover: Given a set of trees � , let
� �

be the set of all paths for which � is the strong cover,

and let � �
be a set of observed link measures for each � � � � �

. We say that � is the medium cover

of link � if any observed � �
, resulting from a situation where successful transmission over each path

is possible, uniquely determines the link measure for � . We say that � is the medium cover of a link

set
�

if � � � �
, � is the medium cover for � .

� Weak cover: Given a set of trees � , � is the weak cover of link � if there exists a � � � such that

� � 	 
 � �
. We say that � is the weak cover of a link set

�
if � � � �

, � is the weak cover of � .

We refer to the problems of finding these types of solutions as S-MTIP/S-MMTCP, W-MTIP/W-MMTCP

and M-MTIP/M-MMTCP respectively. Several cases are of interest to us. One is where
� � 	

, i.e., where

the objective is to cover the entire network. A second is where
�

consists of one link, 
 � 
 � � . If, � � , we set� 
 � � � � , the problem becomes that of covering the link set
�

with the set of trees with minimum total per

tree cost.

3 The Multicast Tree Identifiability Problem

In this section, we consider the identifiability problem associated with the weak, strong, and medium cover

problems. In the case of weak covers, the identifiability problem is straightforward. It suffices to check

whether each link in
�

appears in one of the trees within � . The identifiability problem is also straightfor-

ward in the case of strong covers. In this case,
�

is identifiable iff each link within
�

lies between branch

points in at least one tree within � .

The identifiability problem for medium covers is more interesting and has application to a much larger

set of network characterization problems than the one being considered in this paper, e.g., [11]. Unlike the

weak and strong cover problems, we have results only for summable link measures. Fortunately, this is not

restrictive as such measures include loss probabilities, average delays, delay variances, and others.

We say that a link measure is summable if, for a path � consisting of the set of links � ,

� � � � � � � � � �
(2)

where
� �

and � � are the link measures for the path � and the link � , respectively. We also require that

� � be finite if it is possible to transmit across link � . Expected link delay is an example of a summable

link measure.1 The logarithm of the probability of successful transmission is summable provided that loss

events are independent from link to link. Note that if it is possible to transmit on a link, then this link
1Note that for link delay, ”possible to transmit” means the expected delay is finite.
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measure is finite. Given the logarithm of the success probability, we can of course compute the loss or

success probability.

We focus now on the identifiability problem associated with the medium problem. Let � � � . Define a

segment in � to be a path between either the root of � and the closest branch point, two neighboring branch

points, or a branch point and a leaf of � . Let � be the set of all segments within the trees contained in � .

Each segment � � � is a path within � . The fundamental assumption underlying our work is that � allows

us to obtain
� �

, for all � � � , i.e., � is identifiable from � . Note also that � corresponds to a set of logical

links that corresponds to the strong cover of � . Now, (2) holds for all � � � . If we introduce the � � � � � 	 �
matrix 
 where 
 � � 
 � � if link � belongs to segment � and 0 otherwise, then we have the following matrix

equation


 � � �
(3)

where the components of � are � � and the components of
�

are
�

� . We state without proof the following

identifiability result.

Theorem 1 Let � be a set of multicast trees. Provided that the link measures are summable, � identifies

the link measures � � , � � �
iff for

�
such that the components correspond to the number of links in the

segment, there is a unique set
�

� � � � � � �
that satisfies equation (3).

Determination of whether
�

is identifiable or not can be efficiently performed. Choose
�

� to be the

number of links in segment � � � . Apply Gaussian elimination to 
 to obtain its reduced row echelon form

matrix 
 � . �
is identifiable if � � � �

, there is some row in 
 � where the column corresponding to link � is

the only non-zero value. This corresponds to the existence of a unique set
�

� � � � � � �
satisfying (3).

4 Approximating the Minimum cost Multicast Tree Cover Problem

We have defined three types of Multicast Tree Cover Problems: the S-MMTCP, the W-MMTCP, and the

M-MMTCP. Unfortunately, as the following theorem shows, not only are these problems NP-Complete,

we cannot even expect to find even a good quality approximation to these problems. In particular, we can

demonstrate the following (the proof is deferred to the full version of the paper):

Theorem 2 For each of S-MMTCP, W-MMTCP, and M-MMTCP, it is NP-Hard to find a solution that is

within a factor of
� � � �  ! " � � � of the optimal solution, for any

� # $ . These problems are also still NP-Hard

even with the restriction that � � � % � �  � $ .

Since we cannot expect to solve these problems exactly, in the remainder of this section, we focus on

approximation algorithms and heuristics for good solutions. In Section 4.1, we focus on approximation
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algorithms for the case where the goal is to minimize the total cost of setting up the multicast trees. We

provide polynomial time algorithms that have a provable bound on how close to optimal the resulting solu-

tion is for the S-MMTCP and the W-MMTCP. In Section 4.2, we describe extensions to these algorithms for

the problem of approximating the general MMTCP. The resulting algorithms only run in polynomial time

when the number of possible receivers is � � � � � � � � �
, and thus, to approximate the general MMTCP more

efficiently, we also propose a heuristic that always finds a solution to the general MMTCP in polynomial

time. In Section 6, we experimentally verify the quality of the solutions found by this heuristic.

4.1 Minimizing the total per-tree cost

We first study how to approximate the MMTCP when the goal is only to minimize the total cost for setting

up the multicast trees but not the cost for multicast traffic to travel links, i.e.,
� 	 
 � in (1). This problem

is simpler, since without a cost for link traffic, if a sender is performing a multicast, there is no additional

cost for sending to every receiver. Thus, we can assume that any active sender multicasts to every possible

receiver. Note, however, that by Theorem 2, even this special case is NP-Hard to approximate within better

than a
� � � 
 � factor. We describe algorithms for this problem that achieve exactly this approximation ratio.

These algorithms rely on the fact that when
� � � � 
 � � � � , then both the W-MMTCP and the S-MMTCP can

be solved using algorithms for the weighted Set-Cover problem, which is defined as follows:

� The weighted Set-Cover problem: given a finite set � 
 � � � � � � � � � � � � � �
and a collection of subsets

of � , � 
 � � � � � � � � � � � � � �
, where each � � � � is associated with a weight � � , find the minimum

total weight subset �� 
 � �� � � � � � � ��  
� � � such that each

� � ! � is contained in some �� " ! �� .

To use algorithms for the weighted Set-Cover problem to solve the S-MMTCP or W-MMTCP, we simply

set � 
 

, � � 
 � � ! 


such that � is in the cover (strong or weak, respectively) produced by # � , where

# � is the tree produced by sender $ multicasting to every receiver
�
. The weight of � � is the per-tree cost

of multicasting from sender $ . Any solution to the resulting instance of the weighted Set-Cover problem

produces a S-MMTCP (W-MMTCP, resp.) solution of the same cost.2 Using this idea, we introduce two

algorithms for the MMTCP: a greedy algorithm modeled after a weighted Set-Cover algorithm analyzed by

Chvatal [4], and an algorithm that uses 0-1 integer programming, constructed using a weighted Set-Cover

algorithm analyzed by Srinivasan [12].

Greedy algorithm: The intuition behind the greedy algorithm is simple. Assume first that the per-tree cost

is the same for every multicast tree. In this case, the algorithm, at every step, chooses the multicast tree that

covers the most remaining uncovered links. This is repeated until the entire set of links is covered. When
2Note that this technique does not work for the case of a medium cover, since the set of links in the medium cover of a tree % &

will depend on what other trees are also being used.
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different trees have a different per-tree cost, then instead of maximizing the number of new links covered,

the algorithm maximizes the number of new links covered, divided by the cost of the tree. Intuitively, this

maximizes the ”profit per unit cost” of the new tree that is added.

The details of the algorithm are shown in Figure 2. This algorithm is easily seen to run in polynomial

time for all three types of covers. For the W-MMTCP and S-MMTCP , Theorem 3 provides a bound on how

good an approximation the algorithm produces. This algorithm can also be used to solve the M-MMTCP .

We verify the quality of the approximation obtained for the M-MMTCP experimentally.

1. Apply the multicast routing protocol A to compute � , the set of all multicast

trees from a source in � to every receiver in � . � � � � � , set its cost � � � 	 
 � � � � .
2. Set 
 � � � �
 � � � �� � � �
3. If

� � ��
, then stop and output �
 .

4. � � � � 
 � �
 , set
� � � 	 � � � �
 � � � � � � 	 � � � � � . Find � � � 
 � �
 that maximizes � � � � � � � � �� � � � � .

5. �� � �� � � � � � � � , �
 � �
 � � � � � . Go to step 3.

Figure 2: The greedy algorithm to approximate MMTCP.

Theorem 3 For any instance � of S-MMTCP or W-MMTCP with
 ! " # $ % & ' " , the greedy algorithm finds

a solution of cost at most ( ) * + , - . , /0 1 2 3 4 5 6 &
where

+ $ 7 8 * ! 9 : 9 & 7 ; < => ? / 9 : > 9 #
, and 4 5 6 is the cost

of the optimal solution to � .

We see from Theorems 2 and 3 that the performance of the greedy algorithm is the best that we can

hope to achieve. However, these theorems only apply to the worst case performance; for the average case,

the performance may be much better, and the best algorithm may be something completely different. We

investigate this issue further by introducing a second approximation algorithm, based on 0-1 integer pro-

gramming. We shall see in Section 6 that the 0-1 integer programming algorithm performs better than the

greedy algorithm in some cases. The details of this algorithm are omitted from this version of the paper; we

here only state the following theorem that demonstrates how good a solution is provided by this approach.

Theorem 4 For any instance � of either the S-MMTCP or the W-MMTCP, the 0-1 linear programming

algorithm finds a solution of cost at most 4 5 6 ! @ , 4 ! 7 ; < A ) * !
B

C 4 5 6 # & D ) * !
B

C 4 5 6 # E # # &
where 4 5 6

is the optimal solution to � .

We also point out that in the Set-Cover problem, if we let
+ $ 7 ; < 9 F > 9 , then even for

+ $ G
, the

set cover problem is still NP-hard. However, it can be solved in polynomial time provided that
+ $ @ or+ $ H

. Since we can transform the S-MMTCP and the W-MMTCP to Set-Cover problems, we know that the

S-MMTCP and the W-MMTCP can be solved in polynomial time given that 7 ; < > 9 : I J ! 6 > # 9 K H
where

6 > is the tree produced by sender L multicasting to every receiver.
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4.2 Minimizing the total cost

We next look at the general MMTCP, where the goal is to minimize the total cost. In addition to the per-tree

cost of the multicast trees used in the cover, this includes the cost of multicast traffic traveling on the links

used by the trees. Both the greedy algorithm and 0-1 integer programming algorithm can be extended to

approximate the general problem. For the greedy algorithm, we simply replace the first step with:

1. Apply the multicast routing protocol A to compute � , the set of all multicast

trees from a sauce in � to any subset of � . � � � � � , compute its cost � � � 	 
 � � � .

The bound from Theorem 3 on the quality of approximation achieved by the greedy algorithm also

applies to this more general algorithm. However, the greedy algorithm has a running time that is polynomial

in � 
 � . For the algorithm of Section 4.1, � 
 � � � � � , which results in a polynomial time algorithm, but for

the more general algorithm considered here, � 
 � � � � � �
� � � � � � � �

. Thus, the more general approximation

algorithm only has a polynomial running time when � � � � � � � � � � �
, where

�
is the size of the input to the

MMTCP problem (i.e., the description of � � � � �
and

 
). The analogous facts also apply to the 0-1 integer

programming algorithms.

In order to cope with large values of � � � in the general MMTCP, we also introduce the fast greedy

heuristic, which always runs in polynomial time. Fast greedy is like the greedy algorithm, except that

instead of considering all possible multicast trees (i.e., every tree from a sender to a subset of the receivers),

it restricts itself to only those trees that contain
!

receivers (or, in the case of a weak cover, 1 receiver). There

will be at most a polynomial number of such trees. Fast greedy then uses the greedy strategy to choose a

subset of these trees covering all required links, and then merges the trees with the same sender. The details

of this heuristic are described in Figure 3. We shall see in Section 6 that the performance of the fast greedy

heuristic is often close to that of the greedy algorithm.

5 Finding the optimal solution in tree topologies

We saw in Theorem 2 that we cannot hope to find an efficient algorithm that solves any of version of the

MMTCP in general. However, this does not rule out the possibility that it is possible to solve these problems

efficiently on certain classes of network topologies. In this section, we study the MMTCP in the case that the

underlying network topology � is a tree. This is motivated by the hierarchical structure of real networks,

which can be thought of as having a tree topology with a small number of extra edges. We shall see in

Section 6 that algorithms for the tree topology can be adapted to provide a very effective heuristic for such

hierarchical topologies. We use this heuristic to provide good solutions to the W-MMTCP problem for the

topologies of the vBNS network, as well as the Abilene network.
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1. If COVER = ‘strong’ or ‘medium’, apply the multicast routing protocol A to
compute � , the set of all multicast trees that have one sender in � and three
receivers in � .
If COVER = ‘weak’, apply the multicast routing protocol A to compute � , the set
of all multicast trees (paths) that have one sender in � and one receiver in � .� � � � � , compute its cost � � � 	 
 � � � .
2. For all � � � � , set � � � � 
 � � � .
3. Set 
 � � � �
 � � � �� � � �
4. If

� � ��
, then aggregate all the trees in �
 who share the same source node

and output �
 . Stop.

5. For all � � � 
 � �
 , set � � � �
 � � � � � and aggregate all the trees in � � sharing a
common source as one tree. Set

� � � 	 � � 
 � � � 	 � � � � � .
Find � � � 
 � �
 that maximizes � 
 � � � � � � �� � � � � .
6. �� � �� � 
 � � � � � , �
 � �
 � � � � � . For each � � � 
 � �
 , if � � shares the same source with� � , � � � � � � � � , � � � �  ! " # 	 
 $ � . Go to step 4.

Figure 3: Fast greedy heuristic to approximate MMTCP.

Our algorithm for the tree topology is guaranteed to find the optimal solution in polynomial time. We

shall describe this algorithm for the (easier) case of the W-MMTCP. In order to describe this algorithm

more concisely, we shall make some simplifying assumptions. In particular, we assume that % is a rooted

binary tree, that the per tree cost of every multicast tree is zero, that
& ' ' ( ) * + + , & ' ' * ) ( + +

and that the

cover requirement on a link can be satisfied from either direction. For the W-MMTCP, these assumptions

can be removed by making the algorithm slightly more complicated, but without significantly increasing the

running time of the algorithm. For the S-MMTCP, all of the assumptions can be removed except for the

assumption that % is a binary tree.

The algorithm, based dynamic programming, starts by creating a table, with one row in the table for each

link - of the tree, and . / . 0 entries in each row, labeled
& 1 2 3 4 3 5 6 , for 7 8 9 ) : 8 . / . . For link - connecting

nodes
; ) < = >

, where
;

is closer to the root, let / ? 2 be the subtree rooted at node < , together with link - and

node
;

. The value computed for entry
& 1 2 3 4 3 5 6 is the minimum possible total cost for the tree / ? 2 (removed

from the rest of the network), subject to the following conditions: all of the links that are required to be

covered in % are covered in / ? 2 , ;
is a source that generates : multicast sessions that are routed across - ,

and
;

is also a receiver that receives 9 multicast sessions. If there are less than 9 senders in / ? 2 @ ;
, or : A 7

and there are no receivers in / ? 2 @ ;
, then we call the pair

' 9 ) : +
invalid for link - , and the value of entry& 1 2 3 4 3 5 6 is set to infinity.

We compute the values in the table one row at a time, in decreasing order of the distance of the corre-

sponding links from the root. When - is connected to a leaf of the tree % , it is straightforward to compute& 1 2 3 4 3 5 6 for all 9 ) : , since if
' 9 ) : +

is valid, then
& 1 2 3 4 3 5 6 , ' 9 B : + & 2 . We now show how to compute the

remaining entries
& 1 2 3 4 3 5 6 for a link - connecting nodes

;
and < , where

;
is closer to the root, and < is

connected to two links C and
D

, as depicted in Figure 4. Since C and
D

are further from the root than - , we
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can assume that
� � � � � � � � � � and

� � � � � 	 � � 	 � have already been computed, for 
 � � � 
 � � 
 � � 
 � � � � � � .
We see that

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	 � � 	 � � � � � � � � � � � � �
, where the minimum is taken

over all � � 
 � � 
 � � 
 � � that provide valid multicast flows through the node � . Which values of the flows

are valid is checked using an algorithm described in Figure 14. For space reasons, this algorithm has been

deferred to the appendix. Along with the value
� � � � � � � � , we store the values of the � � 
 � � 
 � � and � � that

resulted in the minimum
� � � � � � � � . Call these values the optimal indices for

� � � � � � � � . If
� � 
 � �

is invalid for

link � , � � � � � � � � is set to infinity. Also, if link � is in the to be covered set of links,
� � � � � � � � is set to � . By

proceeding in this fashion from the leaves to the root, we see that we can fill in the entire table.

To complete the algorithm, we attach a virtual link � to the root of � with
� � � � � 
 , and use the same

technique to compute
� �  � � � � � . The minimum cost for covering the given set of required links in � is

� �  � � � � � . In order to find the actual multicast trees, we first follow the stored optimal indices from
� �  � � � � �

to the leaves of the tree to determine the actual optimal number of flows in either direction on each link of

the tree. Given this information, a simple greedy algorithm finds a set of multicast trees that results in this

number of flows. The description of this greedy algorithm is left to the full version of the paper. We present

the details of our algorithm, which we call Tree-Optimal, in Figure 5.

Theorem 5 The algorithm Tree-Optimal finds the optimal cost of a solution to the W-MMTCP in any

binary tree in ! � � " � � � � # �
steps.

The proof is provided in the appendix. Following a similar idea, we can also construct an algorithm for

solving the S-MMTCP. However, the strong cover requirements make that algorithm somewhat more com-

plicated than the algorithm presented here.

In order to deal with the case that � is a tree of arbitrary degree (instead of just a binary tree), we

transform � into a binary tree � $ . To do so, choose any node to be the root of the tree � . Then, given

a node % with
&

children, create a virtual node % $ , make it the child of node % and assign zero cost to the

virtual link � % 
 % $ � . Then pick any
& ' ( other links attached to node % , and move them to node % $ . We

repeat this process until all nodes are binary; the resulting tree is � $ . Since the cost of traveling any virtual

link is zero, and no virtual link is in the set of to be covered links, the cost of an optimal solution for the

topology � is the same as the optimal cost for the topology � $ . Thus, we can find the optimal solution

for � by transforming � into the topology � $ , finding an optimal solution for the topology � $ , and then

transforming the solution for � $ into an equal cost solution for � .

We also can deal with the general problem where each multicast tree has a per tree cost. We do this by

adding a virtual node
)

and virtual link �
) 
 � � for each source candidate � , and replacing the source candidate

� with the virtual node
)

. We then assign the cost for initializing the multicast tree that was rooted at node

� as the cost of the link �
) 
 � � . The problem then becomes that of finding the optimal cost covering without
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per tree costs in the resulting network. If we also want to allow the cost of initializing different multicast

trees at the same source to vary, we can attach a different virtual node
�

for each multicast tree rooted at � .

v

l

m n

L-Tree R-Tree

u

Figure 4: A link � incident to the same node as links � and
�

.

1. Add a virtual link � whose downstream node is the root of the tree and assign
zero cost for traveling link � .
2. Create a table � , with each row labeled with a link � , and each column la-
beled by < � � � >, for � � � � � � � 	 � . Initialize every entry in the table to � � .
3. For each link � , let 	 � 
 and 	 � 
 be the number of sources above and below �
respectively. Let � � 
 and � � 
 be the number of receivers above and below � re-
spectively.
4. � � 
 , such that � 
 is a link attached to a leaf node:

if ( 	 � 
 	 � � 
 ) then � � 
 	 � � � 
 � � � � � 
 �
if( � � 
 	 � � 
 ) then � � 
 	 � � � � � � � � � 
 � � � � � � � � � � � � � � � � � 	 � 
 � � � � � 
 � endif

else
if( � � 
 	 � � 
 ) then � � 
 	 � � � � � � � � � 
 � � � � � � � � � � � 	 � 
 endif

if ( � 
 � � ) then � � 
 	 � � � � � � � � else � � 
 	 � � � � � � � � endif
5. Choose any link � 
 , such that row � 
 has not been computed, and � 
 is incident
to a vertex that is also incident to links � � and � � such that rows � � and � � have
been computed. Let � be the node they share.

� � 
 	 � � � � � � � � � � � � � � 
 � � � � � � � � � � � 
 � � � � � � � � � � � � 
 � � � � � � � � � � ,
where � � � �  � � � � � � � � ! � � ! � � 
 � � 
 � � � is true.

If ( � 
 � � ) then � � 
 	 � � � � � � � � endif
6. If all the links are done, then stop and return � � " � � � � � . Else go to step 5.

Figure 5: The algorithm Tree-Optimal. This algorithm finds the cost of the optimal solution to the W-
MMTCP on a binary tree topology. The function � � � � �

is described in the appendix.

6 Experiments and Findings

In this section, we explore the effectiveness of the heuristics presented in the previous two sections. We

consider two settings. First, we consider the two existing Internet2 backbone networks, vBNS and Abilene,

where we study not only the effectiveness of our heuristics, but also the effect that the routing protocol has

on measurement cost. Second, as these networks are rather sparse, we also apply and assess our techniques

to a set of denser, randomly generated graphs.

207



6.1 Internet2 networks

We consider the two Internet2 backbone networks, vBNS [15] and Abilene [16]. Both networks maintain

native IP multicast services using the PIM sparse-mode routing algorithm. Since the experimental results

on the Abilene network are similar to that on vBNS, in this section, we only present the experimental results

from vBNS. The vBNS multicast topology (as of October 25, 1999) is illustrated in [15]. It consists of �
�

�
nodes and �

� �
edges; each node represents a router and each edge represents a link connecting a pair of

routers. The link bandwidths vary between 45M (DS3) and 2.45G (OC48). In our experiments, we assume

that the cost of using a link for measurement within one multicast session is inversely proportional to its

bandwidth. In addition, we assume that only the leaves in the topology (i.e., node of degree one) can be a

sender or a receiver.

6.1.1 Tree heuristic

In section 5 we proposed the algorithm Tree-Optimal that is guaranteed to find optimal solutions in poly-

nomial time for any tree topology. We propose and study a heuristic based on that algorithm. This heuristic

uses the observation that the topology of networks such as vBNS and Abilene is very close to a tree. Further-

more, the bandwidth of the small number of links that create cycles tends to be high, and thus presumably

have low cost.

The heuristic can be applied to any topology, and proceeds in four phases. In the first phase, the topol-

ogy is converted into a tree by condensing every cycle into a single super-node. In the second phase, the

algorithm Tree-Optimal is run on the resulting tree. This gives us a set of multicast trees, defined by a list

of senders, and for each sender a list of receivers. In the third phase, this set of multicast trees is mapped

back to the original topology, so that the same set of senders each send to their respective receivers. This

is guaranteed to cover all of the required links that were not condensed into super-nodes, but may leave

required links that appear in cycles uncovered. The fourth and final phase uses the fast greedy heuristic to

cover any such edge.

Note that the cost of the solution obtained by Tree-Optimal is a lower bound on the cost of the solution

to the actual topology. This implies several important properties of this heuristic. Call any link that appears

on a cycle in the graph a cycle link. If all of the cycle links have zero cost, and no cycle link must be covered,

then the tree heuristic is guaranteed to produce an optimal solution. Also, if there are not many cycle links,

or they all have relatively small cost, then the solution found by the heuristic will usually be close to the

lower bound, and thus close to optimal. The fact that the heuristic produces this lower bound is also useful,

as it allows one to estimate how close to optimal the solution produced by the heuristic is.
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6.1.2 Core based tree versus source based tree

PIM-SM can be used to either generate a shared tree anchored at a rendezvous point (RP) or to generate

source-based trees. In this section, we examine how the choice of tree type impacts the set of links that

can be identified, as well as the minimum cost required to cover a set of links. Henceforth, we use the

generic terms core and core-based tree in place of RP and shared tree. The core based tree can be either

bidirectional where packets can travel both up and down a tree or unidirectional where packets must first

be transmitted to the core before they are then transmitted down to the receivers. For simplicity, we only

consider bidirectional trees.

Identifiability. We examine how well core based trees can identify links relative to source based trees

as a function of the number
�

, where
� � � � � . We consider the case where

� � � . We randomly

choose the
�

nodes from the set of 130 leaves of the vBNS topology with equal probability. Given a set of

senders/receivers, we form source based trees and core based trees and count the numbers of edges that each

type of tree can cover. We construct two sets of core based trees: one set is constructed under the assumption

that all trees can only share a single core, whereas the other set is constructed such that trees can choose any

router within a sub-net of the vBNS network.

We here focus on the strong cover and plot the ratio of the number of edges covered by core based trees

(CBT) to the number of edges covered by source based trees (SBT) in Figure 6. When there is only one

core, source based trees can cover more edges than the core based trees but the difference becomes less as

the number of participants increases. When core based trees have multiple cores to choose from, core based

trees can cover more edges than source based trees when the number of participants is small. Similar results

are observed from experiments where the weak cover is required.
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Figure 6: Identifiability: Core Based Trees versus Source Based Trees (Strong Cover)

Cost. Since the tree heuristic provides a lower bound on the cost of a weak cover, we use the tree heuristic

to compare the costs of covering a given set of links using core based trees and source based trees. We
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assume that every leaf in the vBNS topology can be used as a source and/or a receiver for constructing

multicast trees. By varying the links to be covered, we generate ten problem instances. More precisely, we

first determine the set of edges which can be covered by both source based trees and core based trees. We

then randomly choose
�

� � of these edges to be covered, where each edge is equally likely to be chosen. For

each problem instance, we use the tree heuristic to compute the cost of covering the given set of links if we

are required to use source based trees, core based trees with single core and core based trees with multiple

cores respectively. Figure 7 plots the costs of these different trees as well as lower bounds on the costs. For

each instance, the cost are normalize by the lower bound on the cost of source based trees. We observe that

source based trees are cheaper when only a single core is available for constructing core based trees, but

if multiple cores are available, then the cost of covering a given set of links is similar for the two routing

strategies, with the core based trees being slightly cheaper.
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Figure 7: Cost: Core Based Trees versus Source Based Trees (Weak Cover)

6.1.3 Effectiveness of heuristics

In Section 4 we introduced the greedy algorithm and the 0-1 integer programming algorithm for approxi-

mating S-MMTCP and W-MMTCP, and described their worst case approximation ratio bounds. In order to

approximate the general MMTCP in polynomial time, we also proposed a fast greedy heuristic in Section

4. In this section we study the average performance of these algorithms and heuristics through experiments

on the Internet2 backbone networks. Since the topologies of these networks are close to tree topologies, we

include the performance of the tree heuristic on Internet2 backbones in our study.

To create a suite of problem instances, we varied the sizes of the source and receiver candidate sets. In

addition, for a particular pair of source candidate set and receiver candidate set, we chose the size of the set

of links that must be covered to be proportional to the size of the set of links that the source candidate set and

the receiver candidate set can identify. For each problem size, we generated � � � random problem instances
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for the vBNS multicast network. For each of these problem instances, we determined the cost of the solution

found by each algorithm. We assumed that all the multicast trees have the same fixed initialization cost.

W-MMTCP and S-MMTCP. We ran the algorithms on inputs where the number of source candidates is

eight and the number of receiver candidates varies from eight to sixteen. For small problem instances such

as these, the optimal solutions can be computed for these problem sizes using exhaustive search, and this can

be used to check the quality of the approximation results. For both W-MMTCP and S-MMTCP, we used the

0-1 integer programming, greedy and fast greedy algorithms to approximate the � � � problem instances on

vBNS for each of the problem size. In addition, we used the tree heuristic to approximate the W-MMTCP.

We compare the performance of the algorithms for S-MMTCP in Figure 8 and W-MMTCP in Figure 9.

In both figures, the ratio of the solutions found by the approximation algorithm to the optimal solutions

is plotted. For each approximation algorithm, we sort the ratios in ascending order. Thus, for example,

problem instance 1 for each algorithm represents the instance where that algorithm performed the closest

to optimal, and may correspond to different inputs for the different algorithms. We present plots for two

different problem sizes: 8 sources and 8 receivers, as well as 8 sources and 16 receivers.

In Figure 8, it is surprising to see that the fast greedy algorithm produces the same solution as the greedy

algorithm and that the 0-1 integer programming algorithm yields the optimal solution on most inputs when

the problem size is small. As the problem size increases, the 0-1 integer programming is less likely to

produce the optimal solution and the difference between the fast greedy and the optimal seems to increase

slowly.

In the case of approximating W-MMTCP, the tree heuristic out-performs both the greedy algorithm and

the fast greedy algorithm on most problem instances. The quality of the 0-1 integer programming algorithm

decreases as the problem size increases. The results from the fast greedy are only slightly worse than those

from the greedy algorithm. The difference between the fast greedy algorithm and greedy algorithm seems

to change very slowly as the problem size increases.

M-MMTCP The complexity of the exhaustive search algorithm to compute the optimal solution for the M-

MMTCP is high. Thus, we can only compute the optimal solution for very small problem sizes. Instead of

showing the ratio of the solution returned by our heuristics to the optimal solution, we focus on comparing

the results from the greedy algorithm and the fast greedy heuristic. In Figure 10, we plot the ratio of

solutions from the fast greedy heuristic and the greedy algorithm. We sort the ratios in ascending order. The

difference in the quality of solution between the greedy algorithm and the fast greedy heuristic seems to

increase slowly as the problem size increases. The fast greedy heuristic can produce better results than the

greedy algorithm on a small number of instances.
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Figure 8: Comparison of approximation algorithms for the S-MMTCP on vBNS.
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Figure 9: Comparison of approximation algorithms for the W-MMTCP on vBNS.
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Figure 10: Comparison of approximation algorithms for the M-MMTCP on vBNS.

6.2 Experiments on dense networks

Both vBNS and Abilene are quite sparse, i.e., each network only contains a very small number of additional

edges than a tree topology containing the same number of nodes. In this section, we investigate how our
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algorithms perform on denser network than vBNS and Abilene. Unfortunately, we had no such multicast

topologies available to us. Instead, we make use of randomly generated topologies.

We generated ten 100-node transit-stub undirected graphs using GT-ITM (GT internetwork topology

model). For more details about the transit-stub network model, please refer to [14]. The average out-degree

is in the range of � � � � � � �
. We assigned two costs to each edge in the graphs, one for each direction. These

cost are uniformly distributed in � � � � � �
. By randomly picking the source candidate set, receiver candidate

set and to-be covered set of links and then assigning costs to the edges, we generated ten problem instances

for each graph. We ran all algorithms on a total of 100 problem instances and compared their performance.

We assumed that all the multicast trees have the same fixed initialization cost.
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Figure 11: Comparison of approximation algorithms for the S-MMTCP on 100-node transit-stub.
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Figure 12: Comparison of approximation algorithms for the W-MMTCP on vBNS on 100-node transit-stub.
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Figure 13: Comparison of approximation algorithms for the M-MMTCP on vBNS on 100-node transit-stub.

6.2.1 S-MMTCP and W-MMTCP

We ran the algorithms on inputs where the number of source candidates is eight and the number of receiver

candidates varies from eight to sixteen. We used the 0-1 integer programming, greedy and fast greedy

algorithms to approximate the 100 problem instances for each of the problem sizes. We compare the perfor-

mance of the algorithms for the S-MMTCP in Figure 11 and the W-MMTCP in Figure 12. In both figures,

the ratio of the solution found by the approximation algorithms to the optimal solution is plotted. For each

approximation algorithm, we sorted the ratios ascendantly.

In Figure 11, it is surprising to see that the fast greedy algorithm produces the same solution as the greedy

algorithm and the 0-1 integer programming yields the optimal solution on most inputs. As the problem size

increases, the greedy and fast greedy algorithm are less likely to produce the optimal solution.

In the case of approximating W-MMTCP, the 0-1 integer programming algorithm yields the optimal

solution on about half the problem instances. However, it yields worse results than the greedy and fast

greedy algorithm for about forty percent of the problem instances. The results from the fast greedy are

slightly worse than those from the greedy algorithm in most of cases. The difference between the fast

greedy algorithm and greedy algorithm seems to increase very slowly as the problem size increases.

6.2.2 M-MMTCP

We also ran the algorithms for the M-MMTCP on inputs where the number of source candidates is eight and

the number of receiver candidates varies from eight to sixteen. We compare the results from the greedy algo-

rithm and the fast greedy heuristic. In Figure 13, we plot the ratio of solutions from the fast greedy heuristic

and the greedy algorithm. We sort the ratios in ascending order. The fast greedy heuristic yields the same

results as the greedy algorithm on more than sixty percent of the problem instances. In approximately five
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percent of the problem instances, the fast greedy heuristic yields better solutions than the greedy algorithm.

The difference in the quality of solution between the greedy algorithm and the fast greedy heuristic seems

to increase slowly as the problem size increases.

7 Conclusions

In this paper we focussed on the problem of selecting trees from a candidate set in order to cover a set

of links of interest. We identified three variation of this problem according to the definition of cover and

addressed two questions for each of them:

� is it possible to cover the links of interest using trees from the candidate set?

� if the answer to the first question is yes, what is the minimum set of trees that can cover the links?

We proposed computationally efficient algorithms for the first of these questions. We also established, with

some exceptions, that determining the minimum cost set of trees is a hard problem. Moreover, it is a hard

problem even to develop approximate solutions. One exception is when the underlying topology is a tree in

which case we present efficient dynamic programming algorithms for two of the covers. We also proposed

several heuristics and showed through simulation that a greedy heuristic that combines trees with three or

fewer receivers performs reasonably well.

Last, we applied our methods to the vBNS and Abilene networks and observed

� a heuristic based on the tree algorithm gives excellent results,

� the cost of the set of trees required to cover a set of links is relatively insensitive to the use of either a

core based tree or a source based tree algorithm.
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A Details of the algorithm Tree-Optimal

We first provide the proof of Theorem 5, restated here for convenience.

Theorem 5 The algorithm Tree-Optimal finds the optimal cost of a solution to the W-MMTCP in any binary
tree in � � � � � � � � � �

steps.

Proof: Each entry in the table in row � can be computed by examining � � � � pairs of entries in two other
rows � and

	
, and performing a constant number of steps per pair of entries examined. The bound on

the running time follows from the fact that there are � � � � � � � 
 � � � table entries. In order to prove that the
algorithm returns the correct answer, we show that for all � 
 � 
 � , including � � � 
 � � � � � , the correct
value of

� � � � � � � � is computed. We show this is true for the row corresponding to any link � by a reverse
induction on the distance that � is from the link � . The base cases are the values computed for the links
attached to leaves of the tree � , which can be seen trivially to be correct.

For the inductive step, assume that we want to compute the row associated with the link � , as depicted in
Figure 4. By the inductive hypothesis, we can assume that the rows corresponding to the links � and

	
are

correct. When determining the correct value for entry
� � � � � � � � � � , it was assumed that flows going over the

link � originated or ended at the node � . However, the cost of these flows going over links in the subtree
� � �

is not affected by whether or not these flows also pass over link � and/or links in the subtree � � � .
Therefore, for any values of � and � , the optimal cost of all flows going over links in the subtree � � �

in the
best solution for the tree � � � that sends � �

flows from � across � and receives � �
flows to � across � is
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� � � � � � � � � � . Similarly, the optimal cost of all flows going over links in the subtree � 	 
 in the best solution
for the tree � 	 � that sends � 
 flows from 
 across

�
and receives � 
 flows to 
 across

�
is

� � 
 � � � � � � � . Since
the algorithm Tree-Optimal tries all possible values of flows across links � and

�
, the entry

� � � � � � � � is
correct, which completes the induction.

We also provide some additional details of the algorithm Tree-Optimal. In particular, we describe how
to determine, for a set of three links all incident to the same node, whether or not a given specification
of flows along each of the links leads to a valid multicast flow. We assume that we are given 6 values

� � 
 � � � � �
�

� � 
 �
� � � �

� � � 
 , and
�

� � � that describe the number of flows in to and out of a node 
 along the three
links � , � , and

�
, all incident to node 
 . We also assume that we are given a description of the node 
 that

allows us to determine whether or not 
 is a sender and/or a receiver.
We here provide an algorithm that requires determining if an integer programming problem has a feasible

solution. Standard techniques can solve an integer programming problem in time that is exponential in the
number of constraints. The number of constraints in the algorithm is constant, and thus we can determine if
the values of the flows lead to a valid set of multicast flows through the node 
 in constant time. We point
out that if this integer program were used as a subroutine for the algorithm Tree-Optimal, this would lead
to large constants hidden in the asymptotic notation. However, a more complicated technique can remove
these large constants.

Function: � � � � � � � � � � � � � � � 	 � � � 	 � � � � 
 � � � 
 � � � � � �
1. Set � � to 1 if � is source, otherwise set � � to 
 .
2. Let � � � denote a possible number of flows which first traverse link � and
then link � . Define the following constrains:
Set I

� � � � � � � � � � �
� � � � � � � � 	 � �

� � � � � � � � 
 � �
Set II

� � � � � � � � 	 � � � � � � � � � � � � � �

� � � � � � � � 
 � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �


 � � � � � � � �

 � � � � � � � �


 � � � � � 	 � �

 � � � � � 	 � �


 � � � � � 
 � �

 � � � � � 
 � �

3. If � is not a receiver, return true if there is a feasible integer solution

for constraint sets I and II.

4. If � is a receiver, return true if there is a feasible integer solution for

constraint set II.

Figure 14: How to check if the number of flows into and out of a node is valid
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Abstract

We present MBone experiments that validate an
end-to-end measurement technique we call MINC,
for Multicast Inference of Network Characteristics.
MINC exploits the performance correlation experi-
enced by multicast receivers to infer loss rates and
other attributes of internal links in a multicast tree.
MINC has two important advantages in the Internet
context: it does not rely on network collaboration
and it scales to very large measurements. In previ-
ous work, we laid the foundation for MINC using
rigorous statistical analysis and packet-level simula-
tion. Here, we further validate MINC by compar-
ing the loss rates on internal MBone tunnels as in-
ferred using our technique and as measured using
the mtrace tool. Inferred values closely matched
directly measured values – differences were usually
well below 1%, never above 3%, while loss rates var-
ied between 0 and 35%.

1 Introduction

As the Internet grows in size and diversity, its inter-
nal performance becomes harder to measure. Any
one organization has administrative access to only a
small fraction of the network’s internal nodes, while
commercial factors often prevent organizations from
sharing internal performance data. End-to-end mea-

�This work was sponsored in part by DARPA and the
Air Force Research Laboratory under agreement F30602-98-2-
0238.

surements using unicast traffic do not rely on admin-
istrative privileges, but it is difficult to infer link-
level performance from them and they require large
amounts of traffic to cover multiple paths. There is
a need for practical and efficient procedures that can
take an internal snapshot of a significant portion of
the network.

We have developed a measurement technique that
addresses these problems. Multicast Inference of
Network Characteristics (MINC) [11] uses end-to-
end multicast traffic as measurement probes. It ex-
ploits the inherent correlation in performance ob-
served by multicast receivers to infer the loss rate and
other attributes of paths between branch points in a
multicast routing tree. These measurements do not
rely on administrative access to internal nodes since
they are done between end hosts. In addition, they
scale to large networks because of the bandwidth ef-
ficiency of multicast traffic.

The intuition behind packet loss inference is that
the event that a packet has reached a given internal
node in the tree can be inferred from the packet’s ar-
rival at one or more receivers descended from that
node. Conditioning on this event, we can determine
the probability of successful transmission to and be-
yond the given node. Consider, for example, a simple
multicast tree with a root node (the source), two leaf
nodes (the left and right receivers), a link from the
source to a branch point (the shared link), and a link
from the branch point to each of the receivers (the
left and right links). The source sends a stream of se-
quenced multicast packet through the tree to the two

218



receivers. If a packet reaches either receiver, we can
infer that the packet reached the branch point. Thus
the ratio of the number of packets that reach both
receivers to the number that reached only the right
receiver gives an estimate of the probability of suc-
cessful transmission on the left link. The probability
of successful transmission on the other links can be
found by similar reasoning.

It is not immediately clear whether this technique
applies to more than just binary trees or whether
it enjoys desirable statistical properties. In previ-
ous work [2], we extended this technique to general
trees and showed that the estimate is consistent, that
is, it converges to the true loss rates as the number
of probes grows. More specifically, we developed
a Maximum Likelihood Estimator (MLE) for inter-
nal loss rates in a general tree assuming independent
losses across links and across probes. We derived
the MLE’s rate of convergence and established its
robustness with respect to certain violations of the
independence assumption. We also validated these
analytical results using the ns simulator [15]. We
give a brief account of these results in Section 2.2.

In more recent work [3], we explored the accuracy
of our packet loss estimation under a variety of net-
work conditions. Again using ns simulations, we
evaluated the error between inferred and actual loss
rates as we varied the network topology, propagation
delay, packet drop policy, background traffic mix,
and probe traffic type. We found that, in all cases,
MINC accurately inferred the per-link loss rates of
multicast probe traffic.

In this paper, we further validate MINC through
experiments under real network conditions. We used
a collection of end hosts connected to the MBone,
the multicast-capable subset of the Internet [10]. We
chose one host as the source of multicast probes and
used the rest as receivers. We then made two types of
measurements simultaneously: end-to-end loss mea-
surements between the source and each receiver, and
direct loss measurements at every internal node of
the multicast tree. Finally, we ran our inference al-
gorithm on the results of the end-to-end measure-
ments, and compared the inferred loss rates to the
directly measured loss rates. Across all our exper-
iments, the inferred values closely matched the di-
rectly measured values. The differences between the

two were usually well below 1%, never above 3%,
while loss rates varied between 0 and 35%. Further-
more, the inference algorithm converged well within
2-minute, 1200-probe measurement intervals.

The rest of this paper is organized as follows: Sec-
tion 2 describes our experimental methodology; Sec-
tion 3 presents our experimental results; Section 4
discusses our ongoing work; Section 5 surveys re-
lated work; and Section 6 offers some conclusions.

2 Experimental Methodology

During each of our MBone experiments, we had a
source send a stream of sequenced packets to a col-
lection of receivers while we made two types of
measurement at each receiver. At the source, we
used our mgen traffic generation tool to send one
40-byte packet every 100 milliseconds to a specific
multicast group. The resulting traffic stream placed
less than 4 Kbps of load on any one MBone link.
We reserved multicast address 224.2.130.64 and port
22778 for our experiments using the sdr session
directory tool [21]. At each receiver, we ran the
mtrace [13] and mbat [9] tools to gather statistics
about traffic on this multicast group. Below we de-
scribe our use of mtrace and mbat in more detail.

2.1 Direct measurements

mtrace traces the reverse path from a multicast
source to a receiver. It runs at the receiver and is-
sues trace queries that travel hop-by-hop up the mul-
ticast tree towards the source. Each router along
the path responds to these queries with information
about traffic on the specified multicast group as seen
by that router, including counts of incoming and out-
going packets. mtrace calculates packet losses on
a link by comparing the packet counts returned by
the two routers at either end of the link.

In each of our experiments, we collected mtrace
statistics for consecutive two-minute intervals over
the course of one hour. We ran a separate instance of
mtrace for each interval. Each mtrace run issued
a trace query at the beginning of the interval and an-
other query at the end. We thus measured link-level
loss rates for all thirty intervals in one hour as shown
in Figures 2 – 4. These intervals are not exactly two
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Physical location Abbreviation
AT&T Labs – Research, Florham Park, New Jersey AT&T
Carnegie Mellon University, Pittsburgh, Pennsylvania CMU
Georgia Institute of Technology, Atlanta, Georgia GaTech
University of California, Berkeley, California UCB
University of Kentucky, Lexington, Kentucky UKy
University of Massachusetts, Amherst, Massachusetts UMass
University of Southern California, Los Angeles, California USC
University of Washington, Seattle, Washington UWash

Table 1: End hosts used during our MBone experiments.

Physical location Abbreviation
Atlanta, Georgia GA
Cambridge, Massachusetts MA
San Francisco, California CA
West Orange, New Jersey NJ

Table 2: Routers at multicast branch points during our representative MBone experiment.

minutes long due to delays incurred in collecting re-
sponses to the queries. We recorded timestamps for
the actual beginning and end of each mtrace run to
help synchronize our inference calculations to these
direct measurements.

We chose to measure two-minute intervals based
on our previous experience with MINC. Our simu-
lations have shown that the statistical inference al-
gorithm at the heart of MINC converges to true loss
rates after roughly 1,000 observations [2]. Given the
100 milliseconds between probes in our MBone ex-
periments, two minutes allow for 1,200 probes be-
tween measurements. As shown in Figure 5, 1,200
probes were indeed enough for MINC to converge.

It is important to note that mtrace does not scale
to measurements of large multicast groups if used in
parallel from all receivers as we describe here. Par-
allel mtrace queries come together as they travel
up the tree. Enough such queries will overload
routers and links with measurement traffic. We used
mtrace in this way only to validate MINC on rel-
atively small multicast groups before we move on to
use MINC alone on larger groups.

2.2 Statistical inference

MINC works on logical multicast trees. A logical
tree is one where all nodes, except the root and the
leaves, have at least two children. A physical tree can
be converted into a logical tree by deleting all nodes,
other than the root, that have only one child and then
collapsing the links accordingly. A link in a logical
tree may thus represent multiple physical links. This
conversion is necessary because inference based on
correlation among receivers cannot distinguish be-
tween two physical links unless these links lead to
two different receivers. Henceforth when we speak
of trees we will be speaking of logical trees.

2.2.1 Inference algorithm

Our model for loss on a multicast tree assumes that
packet loss is independent across different links of
the tree, and independent between different probes.
With these assumptions, the loss model is specified
by associating a probability �k with each node k

in the tree. �k is the probability that a packet is
transmitted successfully across the link terminating
at node k, given that it reaches the parent node p�k�
of k.
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Figure 1: Multicast routing tree during our representative MBone experiment.

When a probe is transmitted from the source, we
can record the outcome as the set of receivers the
probe reached. The loss inference algorithm is based
on probabilistic analysis that allows us to express the
�k directly in terms of the expected frequencies of
such outcomes. More precisely, for each node k let
�k denote the probability of the outcome that a given
packet reaches at least one receiver that has k as an
ancestor in the tree. Let Ak denote the probability
that a given packet reaches the node k, i.e., Ak �
�k�k�

�k�
� � ��km where k�� k�� � � � � km is the chain

of m adjacent nodes leading back from node k to
the root of the tree. Then it can be shown that Ak

satisfies

��� �k�Ak� �
Y

j�c�k�

��� �j�Ak� (1)

where the product is taken over all nodes j in c�k�,
the set of children of the node k. It was shown in [2]
that under generic conditions the Ak can be recov-
ered uniquely through (1) if the � are known. The �k

can in turn be recovered since �k � Ak�Ap�k�. Gen-
erally, finding Ak requires numerical root-finding for
(1). In the special case of a node k with two offspring
j and j �, (1) can be solved explicitly:

Ak �
�j�j�

�j � �j�
� �k

(2)

Suppose that in place of the �k in (1), we use the
actual frequencies b�k with which n probes reach at
least one receiver with ancestor k. We denote the
corresponding solutions to (1) by bAk and estimate
the link probabilities by b�k � bAk� bAp�k�. The calcu-
lation of the b�k is achieved though a simple recursion
as follows. Define new variables Yk�i� as function of
the measured outcomes of n probes by

Yk�i� �

�
� if probe i reaches node k
� otherwise

(3)

if k is a leaf node, and

Yk�i� � max
j�c�k�

Yj�i� (4)

otherwise. Then

b�k � �

n

nX
i��

Yk�i� (5)

We showed in [2] that the estimator b�k enjoys two
useful properties: (i) consistency: b�k converges to
the true value �k almost surely as the number of
probes n grows to infinity, and (ii) asymptotic nor-
mality: the distribution of the normalized differencep
n�b�k � �k� converges to a normal distribution as

n grows to infinity. We also investigated in [2] the
effects of correlations that violate the independent
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Figure 2: Loss rates on link to GA when running mtrace from AT&T. The two sets of loss rates agreed
closely over a wide range of values. Differences remained below 1.5% while loss rates varied between 4
and 30%.

loss assumptions. Consistency is preserved under a
large class of temporal correlations, although con-
vergence of the estimates with n can be slower. Spa-
tial correlations perturb the estimate continuously, in
that small correlations lead to small inconsistencies.
When losses on sibling links are correlated the per-
turbation is a second-order effect, in that the degree
of inconsistency depends not on the size of the cor-
relations, but on the degree to which they change
across the tree.

Our earlier papers on MINC [2, 3] contain a de-
tailed description and analysis of the above inference
algorithm, including rules to handle special cases of
the data in which the generic conditions required for
the existence of solutions to (1) fail. In the interests
of brevity, we omit these details from this paper.

2.2.2 Inference calculations

We encoded our loss inference algorithm in a pro-
gram called infer. infer takes two inputs: a de-
scription of the tree topology and a description of the
end-to-end losses experienced by each receiver. It
produces as output the estimated loss rates on every
link in the tree.

We determined the tree topology by combining the
mtrace output from all the receivers. Along with
packet counts, mtrace reports the domain name

and IP address of each router on the path from the
source to a receiver. We built a complete multi-
cast tree by looking for common routers and branch
points on the paths to all the receivers. The topology
of the MBone is relatively static due to that network’s
current reliance on manually configured IP-over-IP
tunnels. These tunnels are themselves logical links
that may each contain multiple physical links. We
verified that the topology remained constant during
our experiments by inspecting the path information
we obtained every two minutes from mtrace.

We measured end-to-end losses using the mbat
tool. mbat runs at a receiver, subscribes to a spec-
ified multicast group, and collects a trace of the in-
coming packet stream, including the sequence num-
ber and arrival time of each packet. We ran mbat
at each receiver for the duration of each experiment.
At the conclusion of an experiment, we transferred
the mbat traces and mtrace output from all the re-
ceivers to a single location.

There we ran the loss inference algorithm on the
same two-minute intervals on which we collected
mtrace measurements. For each receiver, we used
the timestamps for the beginning and end ofmtrace
measurements to segment the mbat traces into cor-
responding two-minute subtraces. Then we ran
infer on each two-minute interval and compared

222



10:50pm 11:00pm 11:10pm 11:20pm 11:30pm 11:40pm 11:50pm
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time at USC

Lo
ss

 R
at

e
Loss rates on link to GA 

inferred
mtrace

10:50pm 11:00pm 11:10pm 11:20pm 11:30pm 11:40pm 11:50pm
0

0.005

0.01

0.015

0.02

0.025

0.03

Time at USC

Lo
ss

 R
at

e

abs(inferred  mtrace) on link to GA 

avg = 0.0024414

(a) Inferred vs. directly measured loss rates (b) Difference between the two

Figure 3: Loss rates on link to GA when running mtrace from USC. These measurements span different
two-minute intervals than those from AT&T (see Fig. 2) because of clock asynchrony. Nevertheless, inferred
and directly measured loss rates agreed closely. Differences were usually below 0.5%, never above 3%,
while loss rates varied between 2 and 35%.

the inferred loss rates with the directly measured loss
rates. We discuss the results in the next section.

3 Experimental Results

We performed a number of MBone experiments us-
ing different multicast sources and receivers, and
thus different multicast trees. Inferred loss rates
agreed closely with directly measured loss rates
throughout our experiments. Here we discuss re-
sults from a representative experiment on August 26,
1998. Tables 1 and 2 list the end hosts and branch
routers involved in this experiment, while Figure 1
shows the resulting multicast tree.

Figure 2 shows that inferred and directly mea-
sured loss rates agreed closely despite a link expe-
riencing a wide range of loss rates. In this case, loss
rates as measured by mtrace varied between 4 and
30%. Nevertheless, differences between inferred and
directly measured loss rates remained below 1.5%.

Figures 2 – 4 all show that inferred and directly
measured loss rates agreed closely despite imperfect
synchronization between infer and mtrace inter-
vals. The two sets of intervals do not always match
because of variable network delays. The timestamps
for the beginning and end of mtrace intervals are

recorded before a trace query is issued and after a
trace query returns, both according to the clock at the
relevant receiver. However, the corresponding packet
counts are recorded at the time the trace query arrives
at each router. Therefore, although the infer in-
tervals are derived from the mtrace intervals using
the same receiver clock, the inference is not always
applied to exactly the same 1,200 probe packets as
the direct loss measurement. Nevertheless, differ-
ences between inferred and directly measured loss
rates across Figures 2 – 4 were usually well below
1%, never above 3%.

Along the same lines, Figures 2 and 3 together
show that inferred and directly measured loss rates
agreed closely for different two-minute intervals on
the same link. We have multiple sets of mtrace
measurements for links shared by multiple receivers,
one set for each receiver. In these cases, we can run
infer on different sets of intervals corresponding
to the different sets of mtrace intervals. mtrace
intervals are different for each receiver because of
clock asynchrony between receivers and because of
the variable network delays discussed above. Nev-
ertheless, differences between inferred and directly
measured loss rates across Figures 2 and 3 remained
below 3%.
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Figure 4: Loss rates on link to CA when runningmtrace from USC. CA experienced an order of magnitude
lower loss rates than GA (see Figs. 2 and 3). Nevertheless, inferred and directly measured loss rates agreed
closely. Differences were usually below 0.5%, never above 2%, while loss rates varied between 0 and 4%.

Figure 4 shows that inferred and directly measured
loss rates agreed closely even for links with very low
loss rates. In this case, loss rates varied between 0
and 4%, an order of magnitude lower than the loss
rates in Figure 2. Nevertheless, differences between
inferred and directly measured loss rates were usu-
ally below 0.5%, never above 2%.

Finally, Figure 5 shows that the inference algo-
rithm converged quickly to the desired loss rates.
Each inferred loss rate reported in Figures 2 – 4 is
the value calculated by infer at the end of the cor-
responding 2-minute, 1200-probe measurement in-
terval. However, infer outputs a loss rate value
for every probe. Figure 5 reports these intermediate
values. As shown, inferred loss rates stabilized well
before a measurement intervals ends. Our algorithm
converged after fewer than 800 probes for all links
and all measurement intervals in our experiments.

4 Ongoing Work

The results reported in the previous section suggest
that it is possible to characterize link-level loss based
on end-to-end multicast measurements. However, a
number of issues need to be resolved before the tech-
nology can be deployed and made available for gen-
eral use.

First, there is the question of how end-to-end mul-
ticast measurements are to be generated and col-
lected. We are pursuing two approaches for address-
ing this question. The first is to add a multicast probe
capability to an existing measurement infrastructure.
We are working with the National Internet Measure-
ment Infrastructure (NIMI) [14] project to do exactly
this. Currently NIMI permits users to schedule a va-
riety of unicast end-to-end measurements between
NIMI platforms and to download the traces to a site
of their choosing. We are augmenting this capabil-
ity to permit the scheduled execution of multicast
end-to-end measurements followed by a distribution
of the traces. Once we have accomplished this, we
will also be able to design and execute a more ex-
tensive set of experiments to validate the inference
techniques against mtrace.

There is one disadvantage with the above ap-
proach, namely that the set of links that can be cov-
ered is limited by the number and placement of NIMI
nodes. We are investigating a second approach that
has the potential of addressing that problem. The ba-
sic idea is to gather end-to-end loss information for
multicast applications, such as teleconferencing and
continuous media streaming, that already exist in the
network. This is possible when the application uses
the Real-Time Transport Protocol (RTP) and its as-
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Figure 5: Inferred loss rates on the three links between UKy and USC (i.e., the links to GA, CA, and USC)
during individual 2-minute, 1200-probe measurement intervals. The inference algorithm converged well
before the measurement interval ended for all links during all measurement intervals.

sociated control protocol, RTCP [20]. Currently, ap-
plications using these protocols require receivers to
multicast loss and delay information to each other.
Currently the loss information is limited, consisting
of short-term and long-term loss rates, and is not ad-
equate for our inference techniques.

We plan to evaluate different ways of augmenting
these RTCP loss reports to provide sufficient infor-
mation to infer link-level loss behavior. This would
allow a measurement node anywhere in the network
to monitor and record the RTCP loss reports for var-
ious applications. This measurement node could
identify the topology of an application using the
third-party measurement feature of mtrace [13],
then apply the inference methodology to obtain the
link-level behavior. The hope is that the number of
participants in these applications will be sufficiently
large to allow a measurement node to estimate the
loss behavior of a large portion of the links in the
network.

A second important deployment issue concerns
the need to know the topology of the multicast tree
in order to apply our techniques. Our current ex-
periments use the multicast tree topology discovered
from executing mtrace. Recent work has shown
that algorithms based on link-level loss estimators
for binary trees can be used to infer the topology
of multicast trees. Topology inference of binary and

general trees was proposed in [19] and [4], respec-
tively. Although not reported here, the latter algo-
rithms are able to infer the trees described in Sec-
tion 3 with reasonable accuracy. Any general pur-
pose inference infrastructure, whether built on top of
NIMI or RTCP, should have the flexibility to use both
mtrace and the topology inference algorithms re-
ported in [19, 4].

In addition to addressing the above deployment is-
sues, we are also exploring new application areas for
MINC. One, we are investigating extensions to our
inference methodology to estimate link-level delay
behavior. We have developed prototype estimators
for the delay distribution and delay variance on in-
ternal links of a multicast tree based on end-to-end
delay measurements. We will describe these results
in future papers. Two, we believe our inference tech-
niques will prove useful in reliable multicast applica-
tions. These applications need to aggregate receivers
to achieve scalable loss recovery. MINC could be
used to group receivers that are topologically close
and share loss performance.

5 Related Work

A growing number of measurement infrastructure
projects (e.g., AMP [1], Felix [6], IPMA [7],
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NIMI [14], Surveyor [22], and Test Traffic [23]) aim
to collect and analyze end-to-end performance data
for a mesh of unicast paths between a set of partic-
ipating hosts. We believe our multicast-based infer-
ence techniques would be a valuable addition to these
measurement platforms. As mentioned in the pre-
vious section, we are working to incorporate MINC
capabilities into NIMI.

A lot of recent experimental work has sought to
understand internal network behavior from end-to-
end performance measurements (e.g., see [5, 12, 17,
18]). In particular, pathchar [16] is under evalua-
tion as a tool for inferring link-level statistics from
end-to-end unicast measurements. Much work re-
mains to be done in this area and with MINC we are
contributing a novel multicast-based methodology.

Regarding multicast-based measurements, we
have already described the mtrace tool [13]. In
addition, the tracer tool [8] performs topology
discovery through the use of mtrace. However,
mtrace suffers from performance and applicability
problems in the context of large-scale Internet mea-
surements. First, as mentioned earlier in this paper,
mtrace needs to run once for each receiver in or-
der to cover a complete multicast tree. This behavior
does not scale well to large numbers of receivers. In
contrast, MINC covers the complete tree in a single
pass. Second, mtrace relies on multicast routers to
respond to explicit measurement queries. Although
current routers support these queries, Internet Ser-
vice Providers (ISPs) may choose to disable this fea-
ture since it gives anyone access to detailed delay and
loss information about paths inside their networks.
In contrast, MINC does not rely on cooperation from
any network-internal elements.

6 Conclusions

We have presented experimental results that validate
the MINC approach to inferring link-level loss rates
from end-to-end multicast measurements. We com-
pared loss rates in MBone tunnels as inferred using
our technique and as measured by mtrace. Inferred
values closely matched directly measured values –
differences were usually well below 1%, never above
3%, while loss rates varied between 0 and 35%. In
addition, our inference algorithm quickly converged

to the true loss rates – inferred values stabilized well
within 2-minute, 1200-probe measurement intervals.

We feel that MINC is an important new methodol-
ogy for network measurement, particularly Internet
measurement. It does not rely on network coopera-
tion and it scales to very large networks. MINC is
firmly grounded in statistical analysis that is backed
up by packet-level simulations and now experiments
under real network conditions. We are continuing to
extend MINC along both analytical and experimental
fronts.
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[3] R. Cáceres, N.G. Duffield, J. Horowitz, D.
Towsley, T. Bu, “Multicast-Based Inference of
Network-Internal Characteristics: Accuracy of
Packet Loss Estimation,” Proc. IEEE Infocom
’99, March 1999.
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Multicast-Based Inference of Network-Internal
Characteristics: Accuracy of Packet Loss

Estimation
R. Cáceres N.G. Duffield J. Horowitz D. Towsley T. Bu

Abstract—We explore the use of end-to-end multicast traffic as measure-
ment probes to infer network-internal characteristics. We have developed
in an earlier paper [2] a Maximum Likelihood Estimator for packet loss
rates on individual links based on losses observed by multicast receivers.
This technique exploits the inherent correlation between such observations
to infer the performance of paths between branch points in the multicast
tree spanning the probe source and its receivers. We evaluate through anal-
ysis and simulation the accuracy of our estimator under a variety of net-
work conditions. In particular, we report on the error between inferred
loss rates and actual loss rates as we vary the network topology, propaga-
tion delay, packet drop policy, background traffic mix, and probe traffic
type. In all but one case, estimated losses and probe losses agree to within
2 percent on average. We feel this accuracy is enough to reliably identify
congested links in a wide-area internetwork.

Keywords—Internet performance, end-to-end measurements, Maximum
Likelihood Estimator, tomography

I. INTRODUCTION

A. Background and Motivation

Fundamental ingredients in the successful design, control and
management of networks are mechanisms for accurately mea-
suring their performance. Two approaches to evaluating net-
work performance have been (i) collecting statistics at inter-
nal nodes and using network management packages to gener-
ate link-level performance reports; and (ii) characterizing net-
work performance based on end-to-end behavior of point-to-
point traffic such as that generated by TCP or UDP. A significant
drawback of the first approach is that gaining access to a wide
range of internal nodes in an administratively diverse network
can be difficult. Introducing new measurement mechanisms into
the nodes themselves is likewise difficult because it requires per-
suading large companies to alter their products. Also, the com-
position of many such small measurements to form a picture of
end-to-end performance is not completely understood.

Regarding the second approach, there has been much recent
experimental work to understand the phenomenology of end-
to-end performance (e.g., see [1], [3], [15], [20], [22], [23]).
A number of ongoing measurement infrastructure projects (Fe-
lix [6], IPMA [8], NIMI [14] and Surveyor [31]) aim to collect
and analyze end-to-end measurements across a mesh of paths
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between a number of hosts. pathchar [11] is under evalua-
tion as a tool for inferring link-level statistics from end-to-end
point-to-point measurements. However, much work remains to
be done in this area.

In a recent paper [2], we considered the problem of character-
izing link-level loss behavior through end-to-end measurements.
We presented a new approach based on the measurement and
analysis of the end-to-end loss behavior of multicast probe traf-
fic. The key to this approach is that multicast traffic introduces
correlation in the end-to-end losses measured by receivers. This
correlation can, in turn, be used to infer the loss behavior of the
links within the multicast routing tree spanning the sender and
receivers. Our principal analytical tool is a Maximum Likeli-
hood Estimator (MLE) of the link loss rates. This estimate is
derived under the assumption that link losses are described by
independent Bernoulli losses. The data for this inference is a
record of which of n probes were observed at each of the re-
ceivers. We have shown that these estimates are strongly con-
sistent (converge almost surely to the true loss rates). Moreover,
the asymptotic normality property of MLEs allows us to de-
rive an expression for their rate of convergence to the true rates
as n increases. The presence of spatial and temporal correla-
tion between losses would violate the assumptions of the model.
However, we showed in [2] that spatial correlations deform the
Bernoulli based estimator continuously (i.e. small correlations
give rise to only small inaccuracies). Moreover, the deformation
is a second order effect in that it depends only on the change in
loss correlations between different parts of the network. Tem-
poral correlations do not alter the strong consistency of the esti-
mator; they only slow the rate of convergence.

We envisage deploying inference engines as part of a mea-
surement infrastructure comprised of hosts exchanging probes
in a wide-area network (WAN). Each host will act as the source
of probes down a multicast tree to the others. A strong advan-
tage of using multicast rather than unicast traffic is efficiency.
N multicast servers produce a network load that grows at worst
linearly as a function of N . On the other hand, the exchange
of unicast probes can lead to local loads which grow as N�, de-
pending on the topology.

B. Contribution

Whereas the experimental component of our previous work
focused on comparing inferred and actual probe losses, the fo-
cus of this paper is on asking how close are the inferred losses
to those of background traffic. We do this under a variety of net-
work configurations. These are specified by varying the follow-
ing: (i) network topology (ii) background traffic mix (iii) packet
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drop policy (iv) probe traffic type, and (v) network propagation
delay. In analyzing potential differences between inferred and
actual losses we identify three potential causes.

The first is the statistical variability expected on the basis
of the loss model. The general theory of MLE's furnished the
asymptotic variance of the estimators as the number of probes
grows. These tell us how many probes must be used in order
to achieve measurements of a desired level of accuracy. It can
be shown that the asymptotic variance of each estimated loss
probability is, to first order, equal to the true loss probability
and otherwise independent of the topology. The role of such
theoretical values is to establish a baseline for variance of loss
estimates of background traffic.

The second potential cause of differences is the non-
conformance of probe losses to the Bernoulli model. In practice
we find quite close agreement between inferred and actual probe
losses. An examination of the underlying loss process shows
that deviations from the Bernoulli model are quite small. The
correlation between packet losses on different links is usually
less than 0.1.

The main contribution to the difference comes from differ-
ences in the loss patterns exhibited by probe and background
traffic. We have mainly used TCP background traffic in the
simulations, reflecting the dominant use of TCP as a transport
protocol on the Internet [32]. However, TCP flows are known
to exhibit correlations. A well-known example of this is syn-
chronization between TCP flows which can occur as a result of
slow start after packet loss [10]. This mechanism can be ex-
pected to give rise to spatial and temporal correlations between
losses. However, we believe that large and long-lasting spatial
dependence is unlikely in a real network because of traffic het-
erogeneity. In our experiments we investigated the effects of two
different discard methods: Drop from Tail and Random Early
Detection (RED) [7]. One of the motivations for the introduc-
tion of RED has been to break dependence introduced through
TCP.

The choice of probe process is one means by which we can
aim to improve the accuracy of inference. A constraint on the
interprobe time is that probe traffic should not itself contribute
noticeably to congestion. Beyond the question of the mean,
the choice of interarrival time distribution can affect the bias
and variance of the MLE. Probes with exponentially distributed
spacings will see time averages; this is the PASTA property
(Poisson Arrivals See Time Averages; see e.g. [33]). This ap-

proach has been proposed for network measurements [24] and
is under consideration in the IP Performance Metrics working
group of the IETF [9]. We compare the effect of using constant
rate probes and Poisson probes. In most cases the difference in
accuracy is quite small. We find a far greater degradation in ac-
curacy when network round trip times were reduced below the
interprobe time.

The remaining sections of the paper are organized as follows.
After a review of related work, in Section II we describe the loss
model, in Section III the MLE and its properties. In Section IV
we describe the algorithm used to compute the MLE from data.
We discuss our framework for quantifying the errors in infer-
ence in Section V. The simulations themselves are reported in
Section VI.

C. Related Work

In the opening paragraphs we listed a number of ongoing
measurement infrastructure projects in progress ([6], [8], [14],
[31]). We believe our multicast-based techniques would be a
valuable addition to these measurement platforms.

Simultaneously with the present work, Ratnasamy and Mc-
Canne [26] have proposed using a multicast-based loss estima-
tor to infer topology. The emphasis in their study is on grouping
multicast receivers, rather than estimating the loss probabilities
themselves. They use the same estimate as we do for loss on the
shared path to two receivers, and this gives rise to an algorithm
for inferring binary trees. Ad hoc extensions to trees with higher
branching ratios are proposed.

There is a multicast-based measurement tool, mtrace [17],
already in use in the Internet. mtrace reports the route from
a multicast source to a receiver, along with other information
about that path such as per-hop loss and delay statistics. Topol-
ogy discovery through mtrace is performed as part of the
tracer tool [13]. However, mtrace suffers from perfor-
mance and applicability problems in the context of large-scale
measurements. First, mtrace traces the path from the source
to a single receiver by working back through the multicast tree
starting at that receiver. In order to cover the complete multi-
cast tree, mtrace needs to run once for each receiver, which
does not scale well to large numbers of receivers. In contrast,
the inference techniques described in this paper cover the com-
plete tree in a single pass. Second, mtrace relies on multi-
cast routers to respond to explicit measurement queries. Cur-
rent routers support these queries. However, Internet service
providers may choose to disable this feature since it gives any-
one access to detailed delay and loss information about paths in
their part of the network. (We have received reports that this is
already occurring). In contrast, our inference techniques do not
rely on cooperation from any network-internal elements.

There has been some ad hoc, statistically non-rigorous work
on deriving link-level loss behavior from end-to-end multicast
measurements. An estimator proposed in [34] attributes the ab-
sence of a packet at a set of receivers to loss on the common path
from the source. However, this is biased, even as the number of
probes n goes to infinity.
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II. DESCRIPTION OF THE LOSS MODEL

Let T � �V� L� denote the logical (as opposed to physical)
multicast tree, consisting of the set of nodes V , including the
source and receivers, and the set of links L, which are ordered
pairs �j� k� of nodes, indicating a (directed) link from j to k.
The set of children of node j is denoted by d�j�; these are the
nodes with a link coming from j. For each node j, other than
the root �, there is a unique node f�j�, the parent of j, such that
j � d�f�j��. Each link can therefore be identified by its “child”
endpoint. We define “ancestors” (grandparents and the like) in
an obvious way, and likewise “descendants”. The difference be-
tween a logical and a physical tree is that, whereas it is possible
for a node to have only one child in the physical tree, in the log-
ical tree each node except the root and leaves must have at least
two children. A physical tree can be converted into a logical tree
by deleting all nodes, other than the root, which have one child
and adjusting the links accordingly.

The root � � V represents the source of the probes and the
set of leaf nodes R � V (i.e., those with no children) represents
the receivers.

A probe packet is sent down the tree starting at the root. If it
reaches a node j a copy of the packet is produced and sent down
the link toward each child of j. As a packet traverses a link k
(recall that k denotes the endpoint), it is lost with probability
�k � � � �k and arrives at k with probability �k. We shall
use the notation � � � � � for any quantity � (with or without
subscripts) between 0 and 1. The losses on different links are as-
sumed to be independent and to occur with the probabilities�k
as described. In [2] we have discussed the potential limitations
of this model, and how the model can be corrected if there are
dependencies between the losses. The two-leaf logical multicast
tree is shown in Figure 1.

We describe the passage of probes down the tree by a stochas-
tic processX � �Xk�k�V where each Xk equals 0 or 1: Xk � �
signifies that a probe packet reaches node k, and � that it does
not. The packets are generated at the source, so X� � �. For
all other k � V , the value of Xk is determined as follows. If
Xk � � then Xj � � for the children j of k (and hence for all
descendants of k). If Xk � �, then for j a child of k, Xj � �
with probability �j, and Xj � � with probability �j , indepen-
dently for all the children of k. We write �� � � to simplify
expressions concerning the �k.

III. MAXIMUM LIKELIHOOD ESTIMATION OF LOSS

If a probe is sent down the tree from the source, the outcome
is a record of whether or not a copy of the probe was received at
each receiver. Expressed in terms of the process X, the outcome
is a configuration X�R� � �Xk�k�R of zeroes and ones at the
receivers (1 = received, 0 = lost). Notice that only the values
of X at the receivers are observable; the values at the internal
nodes are invisible. The state space of the observations X�R� is
thus the set of all such configurations, � � f�� �gR. For a given
set of link probabilities � � ��k�k�V , the distribution of X�R�

on � will be denoted by P�. The probability mass function for
a single outcome x � � is p�x��� � P��X�R� � x�.

Let us dispatch n probes, and, for each x � �, let n�x� denote
the number of probes for which the outcome x is obtained. The

probability ofn independent observationsx�� � � � � xn (with each
xm � �xmk �k�R) is then

p�x�� � � � � xn��� �
nY

m��

p�xm��� �
Y
x��

p�x���n�x� (1)

We estimate � using maximum likelihood, based on the data
�n�x��x��, and we find that the usual regularity conditions that
imply good large-sample behavior of the MLE are satisfied in
the present situation. This is useful for the applications we have
in mind because (a) we want to assess the accuracy of our es-
timates via confidence intervals, and (b) it is important to de-
termine the smallest number n of probes needed to achieve the
desired accuracy. We want to minimize n because, although
sending out probes is inexpensive in itself, networks are subject
to various fluctuations (e.g., [20]) which can perturb the model,
and the measurement process itself ties up network resources.

We begin with a review of our main results on the exis-
tence and uniqueness of the MLE. Another question, not treated
here, but which is important for applications, is the feasibility
and organization of the computations. We work with the log-
likelihood function

L��� � log p�x�� � � � � xn��� �
X
x��

n�x� logp�x���� (2)

In the notation we suppress the dependence of L on n and
x�� � � � � xn. For each node k, let ��k� be the set of outcomes
x � � such that xj � � for at least one receiver j � R which
is a descendant of k, and let �k � �k��� �� P�	��k�
. An
estimate of �k is

b�k �
X

x���k�

bp�x�� (3)

where bp�x� �� n�x��n is the observed proportion of trials with
outcome x. We will show how to find � as a function of the �.
The MLE �� is precisely that � which maximizes L���:

�� � arg max�������LL��� (4)

We shall see that, at least for large n, �� � ����b��, using the
inverse of the function � that expresses the �k in terms of the
�k. Candidates for the MLE are solutions b� of the likelihood
equation:

�L

��k
��� � �� k � U� (5)

Set A � f��k�k�U � �k � �g, and G � f��k�k�U � �k �
� �k� �k �

P
j�d�k� �j �k � U nRg.

Theorem 1: When b� � G, the likelihood equation has the
unique solution b� �� ����b�� that can be expressed as follows.
Define � bAk�k�V for the root node by bA� � �, for leaf nodes
k � R by bAk � b�k, and for all other nodes k � U n R as the
unique solution in ��� �
 of

�� b�k� bAk �
Y

j�d�k�

��� b�j� bAk�� (6)

Then for k � U , b�k � bAk� bAf�k�.
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The form (6) follows from the corresponding relations that ex-
press �k in terms of Ak �� �k�f�k� � � ���.

We complete the picture by showing that the solution of the
likelihood equation actually maximizes the likelihood function
under some additional conditions. The set A contains all posi-
tive�k, including the possibility�k � �. Let us now restrict our
attention to link probabilities � � B � ��� ���R � A. Being
a solution of the likelihood equation does not preclude b� from
being either a minimum or a saddlepoint for the likelihood func-
tion, with the maximum falling on the boundary of B. For some
simple topologies we are able to establish directly that L��� is
(jointly) concave in the parameters at � � b�, which is hence
the MLE ��. For more general topologies we use general results
on maximum likelihood to show that b� � �� for all sufficiently
large n.

Theorem 2:
(i) The model is identifiable in B, i.e., �� �� � B and P� � P��

implies � � ��. Thus, distinct link probabilities � produce
distinct statistical behavior of the b� as n��.
(ii) As n � �, �� � �, with P�- probability 1, i.e., the MLE
is strongly consistent.
(iii) With probability 1, for sufficiently large n, �� � b�, i.e., the
solution of the likelihood equation maximizes the likelihood.
This is proven using large sample theory for MLE, such as in
[30]. Finally we have a result on asymptotic normality of the
MLE. The Fisher Information Matrix at � based on X�R� is the

matrix Ijk��� �� Cov

�
�L
��j

���� �L
��k

���
�

.

Theorem 3: I��� is non-singular, and as n � �, under
P�,

p
n�b� � �� converges in distribution to a multivariate nor-

mal random vector with mean vector 0 and covariance matrix
I�����.
Example: MLE for the Two-Leaf Tree. Denote the 4 points
of � � f�� �g� by f��� ��� �����g. Then

b�� � bp���� � bp���� � bp����� (7)

b�� � bp���� � bp����� b�� � bp���� � bp����� (8)

and equations (6) for bAk in terms of the b�k yield

b�� �
b��b��b�� � b�� � b�� (9)

�
�bp���� � bp������bp���� � bp�����

bp���� (10)

b�� �
b�� � b�� � b��b�� �

bp����
bp���� � bp���� (11)

b�� �
b�� � b�� � b��b�� �

bp����
bp���� � bp���� (12)

Note that although it is possible that b�� � � for some finite n,
this will not happen when n is sufficiently large, due to Theo-
rem 2.

IV. COMPUTATION OF THE MLE ON A GENERAL TREE

In this section we describe the algorithm for computing b� on
a general tree. An important feature of the calculation is that
it can be performed recursively on trees. First we show how to
calculate the b�k. These can be calculated by reconstruction of a

procedure main (k ) f
find x ( k ) ;
infer ( k, � ) ;

g

procedure find x ( k ) f
foreach ( j � d�k� ) fbXj = find x ( j ) ;

foreach ( i � f�� � � � � ng ) fbXk�i� = bXk�i�� bXj �i� ;
g

gb�k = n��
Pn

i��
bXk�i� ;

return bXk ;
g

procedure infer ( k, A ) ;

Ak = solvefor( Ak , ��� b�k
Ak

� ==
Q

j�d�k�
���

b�j
Ak

� );b�k = Ak�A ;
foreach ( j � d�k� ) f

infer ( j , Ak ) ;
g

g

Fig. 2. PSEUDOCODE FOR INFERENCE OF LINK PROBABILITIES

sample path of the full process �Xk�k�V that is consistent with
the measured data X�

�R�� � � � � X
n
�R� from n probes. We define

the n-element binary vector � bXk�k�V recursively by

bXk � Xk� k � R (13)
bXk�i� �

�
j�d�k�

bXj�i�� k � V nR (14)

so that

b�k � n��
nX
i��

bXk�i�� (15)

For simplicity we assume now that b� � 	���� ���V �. The
calculation of b� can be done by another recursion. We formu-
late both recursions in pseudocode in Figure 2. The procedure
find x calculates the bXk and b�k, assuming bXk initializes to
Xk for k � R and � otherwise. The procedure infer calcu-
lates the b�k. The procedures could be combined. The full set
of link probabilities is estimated by executing main(1); recall
� is the single descendant of the root node �. Here, an empty
product (which occurs when the first argument of infer is a
leaf node) is understood to be zero. Here solvefor is a rou-
tine that finds the unique solution bAk in ��� �
 to (6).

The recursive nature of the algorithm has important conse-
quences for its implementation in a network setting. The calcu-
lation of b�k and Ak depends on X only through the � bXj�j�d�k�.
In a networked implementation this would enable the calculation
to be localized in subtrees at a representative node. The compu-
tational effort at each node would be at worst proportional to the
depth of the tree (for the node which is unlucky enough to be
the representative for all distinct subtrees to which it belongs).
The network load induced by the communication of data could
be kept local, e.g., by scoped multicast amongst sibling repre-
sentatives.
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Fig. 3. SIMULATION TOPOLOGY: Links are of two types: “edge” links of 1.5Mb/s capacity and 10ms latency, and interior links of 5Mb/s capacity and 50ms
latency. LEFT: “regular” topology with branching ratio 2. RIGHT: “irregular” topology.

V. FRAMEWORK FOR SIMULATION STUDY

We evaluated our loss inference algorithm using the ns simu-
lator [19]. This enabled us to investigate the effectiveness of the
estimator over a range of network topologies, link delays, packet
drop policies, background traffic types, and probe traffic types.
In particular we were able to determine the actual loss experi-
enced by background traffic, and by probe traffic, and compare
these values to those predicted by the inference algorithm on the
basis of measurements at the leaf nodes. The experiments show
that the agreement between inferred and probe loss is extremely
good. This shows that the model of probe loss and the associated
inference technique are quite effective in the small networks
used in the simulation. This is encouraging since we expect
flow synchronization effects (that would violate the model) to
be more noticeable amongst a smaller numbers of flows. Agree-
ment between inferred loss and background traffic loss is quite
reasonable, although not as close as between inferred and probe
loss. Some difference is expected due to the difference in tem-
poral statistics of TCP flows and probes.

A. Comparing Loss Probabilities

We describe our approach to comparing two sets of loss prob-
abilities p and q. For example p could be an inferred probability
on a link, q the corresponding actual probability. For some error
margin � � � we define the error factor

F��p� q� � max

�
p���

q���
�
q���

p���

�
(16)

where p��� � maxf�� pg and q��� � maxf�� qg. Thus, we treat
p and q as being not less than �, and having done this, the error
factor is the maximum ratio, upwards or downwards, by which
they differ. Unless otherwise stated, we used the default value
� � ���� in this paper. The choice of this metric is motivated by
the expectation that it is desirable to estimate the relative mag-
nitude of loss ratios on different links in order to distinguish

those which suffer higher loss. In summarizing the relative ac-
curacy of a set of loss measurements, we will calculate statis-
tics of the error factor, such as mean and quantiles of F��pi� qi�
where p � �pi� and q � �qi� are two sets of loss probabilities
(inferred and actual, say). Here the index i runs over a set of
links, a set of measurements on the same link made at different
times or during different simulations, or some combination of
these.

B. Summary Statistics of the Error Factor

In describing the mean and variability of the error factors, we
shall use the following summary statistics. We shall estimate
the center of the distribution of a set of error factors xi by the
two-sided quartile-weighted median

m�fxg� �� �Q��� � �Q�� � Q������ (17)

where Qp denotes the pth quantile of the xi. m is particularly
suited to skewed distributions; see [29] for further detail. We
characterize the high values of the error factors through the 90th

percentile. Both these summary statistics are robust, being inde-
pendent of any assumption on the distribution of the error fac-
tors.

C. Experimental Variables

We explored the performance of the inference algorithm un-
der variation of the following quantities.

C.1 Network Topology

We investigated three topologies. We used the two-leaf binary
tree of Figure 1 to explore the variables listed below within a
tightly controlled environment. We also explored two larger bi-
nary topologies: the regular 8 leaf binary tree of Figure 3(left),
and the irregular tree of Figure 3(right). In both of the larger
trees we arranged for some heterogeneity between the edges
and the center in order to mimic the difference between the core
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Fig. 4. ACCURACY OF INFERENCE VS. SAMPLE WINDOW: Mean error factor over all links and windows of regular topology in Figure 3(left) for RED or
DropTail queueing; Poisson or CBR probes. LEFT: inferred loss vs. probe loss. RIGHT: inferred loss vs background loss. Probe bytes are 1.8% of of total;
average utilization is 60%.

and edges of a large WAN, with the interior of the tree having
higher capacity (5Mb/sec) and latency (50ms) than at the edge
(1Mb/sec and 10ms).

C.2 Packet Discard Method

Each node had a buffer capacity of 20 packets, independent
of packet size. We compare the effects of two methods of
packet discard: Drop from Tail (DT), and discard based on Ran-
dom Early Detection (RED) [7]. One of the benefits expected
from the deployment of RED is increased utilization through
the breaking of synchronization that can occur due to slow start
of TCP after congestion, as identified in [10]. We used the ns
default parameters of RED in the simulations.

C.3 Background Traffic

Each of the trees was equipped with a variety of flows of back-
ground traffic. Flows were of two types: infinite data sources
that use the Transmission Control Protocol (TCP), and on-off
sources using the Unreliable Datagram Protocol (UDP), the on
and off periods having either a Pareto or an exponential distri-
bution. In most of the simulations on the larger trees we used
predominantly TCP, with a mixture of UDP. We chose this mix
because TCP is the dominant transport protocol on the Inter-
net [32].

C.4 Probe Characteristics

It is desirable that probe traffic only use a small part of the
available link capacity. For the experiments in the large topolo-
gies we used 40-byte probes with a mean interprobe time of
16ms, i.e. a 20 kbit/sec stream. This is just over 1% of the
capacity of the smallest link used; it would be a far smaller frac-
tion of capacities commonly used in today's Internet backbones.
We used two types of probes: constant rate probes and Poisson
probes. The use of the latter has been proposed [24] for end-to-
end measurements on the basis that Poisson Arrivals See Time
Averages; see e.g. [33].

C.5 Relative Time Scales

We investigated the effects of network roundtrip time on es-
timator accuracy. This is potentially important because the

roundtrip time determines the time it takes TCP to respond to
packet losses. Thus the relative size of this time and the inter-
probe time determines the number of probe packets that sample
congestion due to TCP traffic. In these experiments we reverted
to a uniform link latency of between 1ms and 100ms.

VI. SIMULATION RESULTS

A. Qualitative Sample Path Behavior

We start by illustratingsome properties of sample paths of the
MLE. We shall make mostly qualitative observations initially;
quantitative statistical measures of the accuracy of inference will
be applied later.

In the regular topology of Figure 3(left) we conducted exper-
iments of 240 seconds duration. Background traffic was gen-
erated by 30 infinite FTP sources using TCP, and another 30
on-off UDP sources, mostly with low rates and either exponen-
tial or Pareto distributed. There was one experiment for each of
the four combinations of DropTail or RED packet discard and
Poisson or CBR probes. The mean time between probes was
16ms, so about 15,000 probes were used in each experiment.
For each of the experiments we calculated b� on a moving win-
dow of a given width, using jumps of half the width. We display
the mean error factor as a function of window size in Figure 4.
On the left we show the error factor between inferred and actual
probe loss; on the right between inferred and actual background
loss. The main points to observe are that (i) error factors de-
crease as window size increases; (ii) the error factor between
inferred and probe losses is small when compared with that be-
tween inferred and background losses; (iii) the error factors are
reasonably insensitive to choice of packet discard method and
probe type. To the extent that there are differences, mean error
factors between inferred and background losses for CBR probes
are slightly smaller than for Poisson probes, at least for larger
window sizes (about 1.2 compared with about 1.5). Error fac-
tors for RED are marginally worse than for DropTail. We shall
comment upon these differences later.

B. Dynamic Tracking of Loss

In Figure 5 we display the time series of background, probe
and inferred loss on one link over the moving windows of a sim-
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Fig. 6. ACCURACY AND ORDERING OF INFERENCE VS. SAMPLE WINDOW: Loss rates in regular topology of Figure 3(left) for RED queueing and Poisson
probes. LEFT: 5 second window. RIGHT: 240 second window. Lines join probabilities of a given link. Fewer crossings indicate better preservation of order
between actual and estimated probabilities. Flatter lines indicate better accuracy of estimates. Probe bytes are 3% of total on 1.5Mb/s link with 50% utilization.

ulation similar to that just described. However, we arrange for
some additional sources to be turned on after 60 seconds have
elapsed. We display how inferred losses track the real ones on a
5 second window (left) and a 20 second window (right). There
is considerable variability between the inferred and actual loss at
the 5 second window, not all of which is removed by increasing
to a 20 second window. However, even at the 5 second window
it appears that the estimator responds rapidly to the increase in
actual loss that occurs after 60 seconds have elapsed.

From Figure 5 it is evident that the inferred loss tracks the
probe loss more closely than the loss of background packets.
Increasing the window size narrows some of the difference. We
illustrate this for a single window in Figure 6. For a 5 second
and a 240 second window, we display how the ordering of the
links according to loss probability differs according to whether
the loss used for ordering is that for background or probe or
inferred loss. To do this we have placed each set of probabilities
on an axis (background loss on left, probe loss in middle and
inferred loss on right) and joined the values for given links. The
flatter the lines, the greater the accuracy; the less they cross, the
better the ordering is preserved. In this example, both accuracy
and ordering are improved by using the larger window. It is clear
in this example that despite error factors of about 2 between
some of the inferred and background traffic losses, the inference

is sufficiently accurate to distinguish the links with the highest
loss for either probe or background packets.

C. Quantitative Statistical Measures of Accuracy

We now present some broad statistical measures of the ac-
curacy of the inference in different network configurations in
topologies with 15 links. We conducted 10 experiments of 240
seconds duration for each of the four combinations of DropTail
or RED packet discard with CBR or Poisson probes. We then
calculated the centerm and 90th percentile of the 150 error fac-
tors (10 experiments � 15 links).

The results are tabulated for the regular topology with mixed
TCP and UDP sources in Table I; for the regular topology with
TCP source only in Table II; and for the irregular topology with
mixed sources in Table III. Taking these as a group, the accuracy
of inference of probe loss is striking. Looking at the first pair of
columns in each table we see that the error is no more than 2%
of the true value on average (i.e. an error factor 1.02), the 90th

percentile of the error being 17% of the true value at worst (i.e.
an error factor 1.17).

The error factors between actual probe loss and background
traffic loss are somewhat larger; this difference is then the main
contribution to errors in inferring the background traffic loss by
the probe loss. The center m is less than 1.5, and the 90th per-
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Fig. 7. ESTIMATOR ACCURACY: Scatter plots of 1110 pairs of loss probabilities gathered from all simulations: LEFT: inferred loss vs. probe loss; RIGHT:
inferred loss vs. background loss. All probabilities truncated with error margin � � ��

��.

Discard Probe inf vs. probe probe vs. b'grnd inf vs. b'grnd
Method Type m Q

�� m Q
�� m Q

��

DT PP 1.01 1.07 1.21 1.58 1.23 1.68
DT CBR 1.00 1.03 1.11 1.43 1.11 1.43

RED PP 1.01 1.04 1.14 1.54 1.15 1.56
RED CBR 1.00 1.03 1.10 1.36 1.09 1.39

TABLE I

STATISTICS OF ERROR FACTOR VS. PACKET DISCARD AND PROBE

METHOD. TCP and UDP background traffic. Regular Topology. Weighted

Median and 90th percentile of error factor over all links during 10 simulations

of 240 seconds. Error margin was � � ��
��. In about 20% of cases, one or

both probabilities compared were less than �.

Discard Probe inf vs. probe probe vs. b'grnd inf vs. b'grnd
Method Type m Q

�� m Q
�� m Q

��

DT PP 1.02 1.11 1.47 2.03 1.45 2.19
DT CBR 1.01 1.06 1.31 1.82 1.33 1.81

RED PP 1.01 1.06 1.42 1.92 1.43 1.91
RED CBR 1.01 1.03 1.19 1.55 1.20 1.53

TABLE II

STATISTICS OF ERROR FACTOR VS. PACKET DISCARD AND PROBE

METHOD. TCP background traffic only. Regular Topology. Weighted Median

and 90th percentile of error factor over all links during 10 simulations of 240

seconds. Error margin was � � ��
��. In about 15% of cases, one or both

probabilities compared were less than �.

centile is less than 2.2. Pure TCP background traffic has some-
what higher error factors than mixed TCP and UDP. The irregu-
lar topology has somewhat higher error factors than the regular
topology. The average utilization in these simulations was about
60%. We also conducted simulations at up to 90% utilization on
the two-leaf binary tree with approximately the same number of
probes. In most cases the summary statistics were of the same
order.

Comparing the different packet discard methods, we see that
RED always gives somewhat lower values for m and the 90th

percentile than the corresponding DropTail. This fits with our
expectation that the randomization induced by RED will break
correlations induced by TCP flow control, and hence cause pat-
terns of loss for background traffic to more closely resemble the
Bernoulli loss model.

Comparing the different packet probe types, we see that CBR
has m and 90th percentile consistently slightly lower than for
Poisson probes. The reason for this small difference is not clear

Discard Probe inf vs. probe probe vs. b'grnd inf vs. b'grnd
Method Type m Q

�� m Q
�� m Q

��

DT PP 1.02 1.17 1.34 1.83 1.39 2.24
DT CBR 1.02 1.11 1.24 1.66 1.27 1.84

RED PP 1.01 1.13 1.18 1.62 1.23 1.74
RED CBR 1.01 1.08 1.13 1.54 1.17 1.61

TABLE III

STATISTICS OF ERROR FACTOR VS. PACKET DISCARD AND PROBE

METHOD. TCP and UDP background traffic. Irregular Topology. Mean and

90th percentile of error factor over all links during 10 simulations of 240

seconds. Error margin was � � ��
��. In no more than 8% of cases, one or

both probabilities were less than �.

Link inf vs. probe probe vs. b'grnd inf vs. b'grnd
Delay m Q

�� m Q
�� m Q

��

100ms 1.00 1.04 1.07 1.45 1.07 1.44
30ms 1.00 1.02 1.17 1.54 1.17 1.53
10ms 1.09 1.71 1.28 1.88 1.19 1.49
1ms 1.49 6.83 1.30 1.61 1.71 5.07

TABLE IV

STATISTICS OF ERROR FACTOR VS. LINK DELAY. TCP and UDP

background traffic. Regular Topology. DropTail with Poisson Probes.

Weighted Median and 90th percentile of error factor over all links during 10

simulations of 240s for each delay value. One or both probabilities compared

were less than error margin � � ��
�� in up to 40% of cases.

at present. Poisson probes see time averages [33] and hence
yield unbiased measurements. It is possible though that they ex-
hibit higher variances for the reason that the potentially extreme
(long or short) interarrival times lead to worse sampling of net-
work congestion events.

We examined the influence of network propagation delay on
error factors. For DropTail packet discard and Poisson queueing,
we find (see Table IV) that error factors increase as propagation
delay decreases. A possible explanation for this is the follow-
ing. We observe an increase in utilization as the propagation
delay is decreased, the utilization being close to 100% on some
links when propagation delay is 1ms. Since recovery after TCP
losses will be correspondingly quick, any spare capacity will be
rapidly exploited, and congestion may be long lived, leading to
temporal correlations between probe losses. Whereas this would
not alter the asymptotic accuracy of the MLE, it would slow the
rate of convergence as the number of probes is increased, lead-
ing to high estimator variance. This hypothesis is supported by
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Table IV: at 1ms feedback delay, most of the error is between
the inferred and probe loss. 1ms is far shorter than the minimum
link propagation delays on the Internet, so we do not expect this
phenomenon to occur in practice. We stress, however, that it re-
mains to obtain a full understanding of the effect on accuracy of
the interactions between interprobe time, propagation delay and
variables such as packet discard method and probe type.

We summarize all our experiments hitherto in Figure 7, where
we show a scatter plot of pairs of (inferred loss, probe loss) on
the left, and pairs of (inferred loss, background loss) on the
right. Thus each point corresponds to a single link on a sin-
gle simulation run. Also included here are points for experi-
ments conducted with the combinations of traffic types, discard
method, probe distribution and topology described above, but
with a more variable flow duration. The flow durations were
obtained by choosing random beginning and end times for each
flow in a given simulation, rather than having the flows present
for the whole simulation. In these examples, inferred loss is a
better predictor of background loss when the latter is at least
1%: for this subset of data points the mean error factor is 1.20
compared with 1.28 for the complete set.

VII. CONCLUSIONS

In this paper we have analyzed the efficacy of multicast-based
inference in estimating loss probabilities in the interior of a net-
work from end-to-end measurements. The principal tool was a
Maximum Likelihood Estimator of the link loss probabilities.
Probes are multicast from a source; the data for the MLE is a
record of which probes were received at each leaf of the multi-
cast tree. Although the method assumes that losses are indepen-
dent, we have shown in some cases that it is relatively insensitive
to the presence of spatial loss correlations; temporal correlations
increase its variance, so that a longer measurement period is re-
quired; see [2].

We evaluated the method by conducting ns simulations that
used topologies and traffic flows with quite a rich structure, with
several hops per flow and flows per link. We compare inferred
and actual loss probabilities on the links of the logical multi-
cast tree. The experiments showed that the loss probabilities for
probe packets were inferred extremely closely by the MLE.

The probe traffic was typically only 1% to 2% of the traffic
on each link. We investigated how closely loss rates for back-
ground traffic were inferred. We examined the effect of chang-
ing traffic mix, topology, packet discard method and probe type.
We found small differences between these, compared with the
inherent variability of the estimates. Varying the network feed-
back delay also affected the accuracy of inference. For very
short propagation delays we believe that the aggressive behav-
ior of TCP slow start is a factor in decreasing accuracy. We
intend to investigate this phenomenon more fully.

Over a range of experiments our summary statistics show that
the relative error of the inferred and actual losses had a distribu-
tion whose center was no greater than about 1.5 and whose 90th

percentile was no worse than a factor of about 2.2. If one is lim-
ited to using inferred probe loss to estimate background traffic
loss, this would mean that only in 1% of the worst cases would
a single inference fail to distinguish between two background
loss rate that separated by a factor of 5. We believe that this is

sufficiently accurate to identify the most congested links.
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